×

Energy dissipation mechanisms in ductile fracture. (English) Zbl 1145.74409

Summary: The objective is to investigate energy dissipation mechanisms that operate at different length scales during fracture in ductile materials. A dimensional analysis is performed to identify the sets of dimensionless parameters which contribute to energy dissipation via dislocation-mediated plastic deformation at a crack tip. However, rather than using phenomenological variables such as yield stress and hardening modulus in the analysis, physical variables such as dislocation density, Burgers vector and Peierls stress are used. It is then shown via elementary arguments that the resulting dimensionless parameters can be interpreted in terms of competitions between various energy dissipation mechanisms at different length scales from the crack tip; the energy dissipations mechanisms are cleavage, crack tip dislocation nucleation and also dislocation nucleation from a Frank–Read source. Therefore, the material behavior is classified into three groups. The first two groups are the well-known intrinsic brittle and intrinsic ductile behavior. The third group is designated to be extrinsic ductile behavior for which Frank–Read dislocation nucleation is the initial energy dissipation mechanism. It is shown that a material is predicted to exhibit extrinsic ductility if the dimensionless parameter \(b{\rho}_{\text{disl}}^{1/2}\) (\(b\) is Burgers vector, \(\rho_{\text{disl}}\) is dislocation density) is within a certain range defined by other dimensionless parameters, irrespective of the competition between cleavage and crack tip dislocation nucleation. The predictions compare favorably to the documented behavior of a number of different classes of materials.

MSC:

74R20 Anelastic fracture and damage
74M25 Micromechanics of solids
Full Text: DOI

References:

[1] Anderson, P. M.; Rice, J. R., Dislocation emission from cracks in crystal or along crystal interfaces, Scripta Metall., 20, 1467-1472 (1986)
[2] Argon, A. S., Mechanics and physics of brittle to ductile transitions in fracture, J. Eng. Mater. Technol., 123, 1-11 (2001)
[3] Argon, A. S.; Gally, B. J., Selection of crack-tip slip systems in the thermal arrest of cleavage cracks in dislocation-free silicon single crystals, Scripta Mater., 45, 1287-1294 (2001)
[4] Armstrong, R., Cleavage crack propagation within crystals by the Griffith mechanism versus a dislocation mechanism, Mater. Sci. Eng., 1, 251-256 (1966)
[5] Ashby, M. F.; Embury, J. D., The influence of dislocation density on the ductile-brittle transition in BCC metals, Scripta Metall., 19, 557-562 (1985)
[6] Beltz, G. E.; Rice, J. R., Dislocation nucleation at metal-ceramic interfaces, Acta Metall. Mater., 40, Suppl., S321-S331 (1992)
[7] Beltz, G. E.; Rice, J. R.; Shih, C. F.; Xia, L., A self-consistent model for cleavage in the presence of plastic flow, Acta Mater., 44, 3943-3954 (1996)
[8] Bullen, F. P.; Wain, H. L., Yielding and fracture in some body-centred cubic metals, J. Austr. Inst. Metals, 12, 64-70 (1967)
[9] Elssner, G.; Korn, D.; Rühle, M., The influence of interface impurities on fracture energy of UHV diffusion bonded metal-ceramic bicrystals, Scripta Metall. Mater., 31, 1037-1042 (1994)
[10] Frank, F.G., 1950. The origin of dislocations. In: Plastic Deformation of Crystalline Solids, US Govt. Printing Office, USA.; Frank, F.G., 1950. The origin of dislocations. In: Plastic Deformation of Crystalline Solids, US Govt. Printing Office, USA.
[11] Freund, L. B.; Hutchinson, J. W., High strain-rate crack-growth in rate-dependent plastic solids, J. Mech. Phys. Solids, 33, 169-191 (1985)
[12] Friedel, J., Dislocations (1964), Pergamon Press: Pergamon Press Oxford · Zbl 0123.45205
[13] Gilman, J. J., Physical nature of plastic flow and fracture, (Lee, E. H.; Symonds, P. S., Plasticity (1960), Pergamon Press: Pergamon Press Oxford), 43-99
[14] Gil Sevillano, J., Cleavage-limited maximum strength of work-hardened B.C.C polycrystals, Acta Metall., 34, 1473-1485 (1986)
[15] Griffith, A. A., The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. London A, 221, 163-198 (1920) · Zbl 1454.74137
[16] Gumbsch, P.; Riedle, J.; Hartmaier, A.; Fischmeister, H. F., Controlling factors for the brittle-to-ductile transition in tungsten single crystals, Science, 282, 1293-1295 (1998)
[17] Hirth, J. P.; Lothe, J., Theory of Dislocations (1992), Krieger Publishing Company: Krieger Publishing Company Malabar, FL
[18] Hutchinson, J. W., Singular behavior at the end of a tensile crack tip in a hardening material, J. Mech. Phys. Solids, 16, 13-31 (1968) · Zbl 0166.20704
[19] Hutchinson, J. W.; Paris, P. C., Stability analysis of J-controlled crack growth. Elastic-Plastic Fracture, ASTM STP, 668, 37-64 (1979)
[20] Irwin, G.R., 1948. Fracture dynamics. In: Jonassen, F., Roop, W.P., Bayless, R.T. (Eds.), Fracturing of Metals. American Society for Metals, Cleveland, pp. 147-166.; Irwin, G.R., 1948. Fracture dynamics. In: Jonassen, F., Roop, W.P., Bayless, R.T. (Eds.), Fracturing of Metals. American Society for Metals, Cleveland, pp. 147-166.
[21] Joós, B.; Duesbery, M. S., The Peierls stress of dislocationsan analytical formula, Phys. Rev. Lett., 78, 266-269 (1997)
[22] Kanninen, M. F.; Popelar, C. H., Advanced Fracture Mechanics (1985), Oxford University Press: Oxford University Press Oxford · Zbl 0587.73140
[23] Kobayashi, S.; Ohr, S. M., In situ observations of the formation of plastic zone ahead of a crack tip in copper, Scripta Metall., 15, 343-348 (1981)
[24] Kocks, U. F.; Argon, A. S.; Ashby, M. F., Thermodynamics and kinetics of slip, Prog. Mater. Sci., 19, 1-288 (1975)
[25] Kramer, I. R.; Feng, C. R.; Wu, B., Dislocation-depth distribution in fatigued metals, Mater. Sci. Eng., 80, 37-48 (1986)
[26] Kysar, J. W., Directional dependence of fracture in copper/sapphire bicrystal, Acta Mater., 48, 3509-3524 (2000)
[27] Kysar, J. W., Continuum simulations of directional dependence of crack growth along a copper/sapphire bicrystal interface, Part I, J. Mech. Phys. Solids, 49, 1099-1128 (2001) · Zbl 1162.74447
[28] Kysar, J. W., Continuum simulations of directional dependence of crack growth along a copper/sapphire bicrystal interface, Part II, J. Mech. Phys. Solids, 49, 1129-1153 (2001) · Zbl 1162.74447
[29] Lakshmanan, V.; Li, J., Edge dislocations emitted along inclined planes from a mode-I crack, Mater. Sci. Eng. A, 104, 95-104 (1988)
[30] Lawn, B. R., Fracture of Brittle Solids (1993), Cambridge University Press: Cambridge University Press Cambridge
[31] Li, J. C.M., Computer simulations of dislocations emitted from a crack, Scripta Metall., 20, 1477-1482 (1986)
[32] Lin, I.-H.; Thomson, R., The transition from an emitting to a cleaving crack, Scripta Metall., 17, 1031-1034 (1983)
[33] McClintock, F. A.; Argon, A. S., Mechanical Behavior of Material (1966), Addison-Wesley: Addison-Wesley Reading, MA
[34] Michot, G.; Loyola de Oliveira, M. A., Plastic relaxation at crack tip: from brittle to ductile behavior, Mater. Trans. JIM, 42, 14-19 (2001)
[35] Nabarro, F. R.N., Theory of Crystal Dislocations (1967), Oxford University Press: Oxford University Press Oxford · Zbl 0046.44804
[36] Nabarro, F. R.N., Fifty-year study of the Peierls-Nabarro stress, Mater. Sci. Eng. A, 234-236, 67-76 (1997)
[37] Needleman, A., A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., 54, 525-531 (1987) · Zbl 0626.73010
[38] Orowan, E., 1945. Notch brittleness and the strength of metals. Proceedings of the Society of Engineers and Shipbuilders, Paper No. 1063, Scotland.; Orowan, E., 1945. Notch brittleness and the strength of metals. Proceedings of the Society of Engineers and Shipbuilders, Paper No. 1063, Scotland.
[39] Peach, M.; Koehler, J. S., The forces exerted on dislocations and the stress fields produced by them, Phys. Rev., 80, 436-439 (1950) · Zbl 0039.23301
[40] Rice, J.R., 1965. An examination of the fracture mechanics energy balance from the point of view of continuum mechanics. In: Yokobori, T., Kawasaki, T., Swedlow, J.L. (Eds.), Proceedings of the First International Conference on Fracture, Sendai, Japanese Society for Strength and Fracture of Materials, Vol. 1, pp. 309-340.; Rice, J.R., 1965. An examination of the fracture mechanics energy balance from the point of view of continuum mechanics. In: Yokobori, T., Kawasaki, T., Swedlow, J.L. (Eds.), Proceedings of the First International Conference on Fracture, Sendai, Japanese Society for Strength and Fracture of Materials, Vol. 1, pp. 309-340.
[41] Rice, J. R., A path independent integral and the approximate analysis of strain concentrations by notches and cracks, J. Appl. Mech., 35, 379-386 (1968)
[42] Rice, J. R., Dislocation nucleation from a crack tipan analysis based on the Peierls concept, J. Mech. Phys. Solids, 40, 239-271 (1992)
[43] Rice, J. R.; Beltz, G. E., The activation energy for dislocation nucleation at a crack, J. Mech. Phys. Solids, 42, 333-360 (1994) · Zbl 0800.73345
[44] Rice, J. R.; Rosengren, G. F., Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Solids, 16, 1-12 (1968) · Zbl 0166.20703
[45] Rice, J. R.; Thomson, R., Ductile versus brittle behaviour of crystals, Philos. Mag., 29, 73-97 (1974)
[46] Rice, J. R.; Suo, Z.; Wang, J.-S., Mechanics and thermodynamics of brittle interfacial failure in bimaterial systems, (Ruhle, M.; Evans, A. G.; Ashby, M. F.; Hirth, J. P., Acta-Scripta Metallurgica Proceedings Series (1990), Pergamon Press: Pergamon Press Oxford), 269-294
[47] Schöck, G.; Püschl, W., The formation of dislocation loops at crack tips in 3 dimensions, Philos. Mag. A, 64, 931-949 (1991)
[48] Suresh, S.; Ritchie, R. O., Propagation of short fatigue cracks, Int. Metals Rev., 29, 445-476 (1984)
[49] Taylor, G. I., The mechanism of plastic deformation of crystals. Part I.—Theoretical, Proc. R. Soc. London A, 145, 362-387 (1934) · JFM 60.0712.02
[50] Tetelman, A. S.; McEvily, A. J., Fracture of Structural Materials (1967), Wiley: Wiley New York
[51] Thomson, R., Physics of fracture, (Ehrenreich, H.; Turnbull, D., Solid State Physics (1986), Academic Press: Academic Press New York), 1-129
[52] Vehoff, H.; Stenzel, H.; Neumann, P., Experiments on bicrystals concerning the influence of localized slip on the nucleation and growth of intergranular stress corrosion cracks, Z. Metall., 78, 550 (1987)
[53] Wang, J. N., Prediction of Peierls stresses for different crystals, Mater. Sci. Eng. A, 206, 259-269 (1996)
[54] Wang, J.-S.; Anderson, P. M., Fracture behavior of embrittled F.C.C. metal bicrystals, Acta Metall. Mater., 39, 779-792 (1991)
[55] Wang, J.-S.; Mesarovic, S. D., Directional dependence of corrosion fatigue of iron-silicon bicrystals, Acta Metall. Mater., 43, 3837-3849 (1995)
[56] Westwood, A. R.C.; Kamdar, M. H., Concerning liquid metal embrittlement, particularly of zinc monocrystals by mercury, Philos. Mag., 8, 787-804 (1963)
[57] Xu, G.; Argon, A. S.; Ortiz, M., Critical configurations for dislocation nucleation from crack tips, Philos. Mag. A, 75, 341-367 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.