×

Relationship of algebraic theories to powerset theories and fuzzy topological theories for lattice-valued mathematics. (English) Zbl 1145.54004

Author’s summary: This paper deals with a broad question – to what extent is topology algebraic – using two specific questions: (1) what are the algebraic conditions on the underlying membership lattices which insure that categories for topology and fuzzy topology are indeed topological categories; and (2) what are the algebraic conditions which insure that algebraic theories in the sense of Manes are a foundation for the powerset theories generating topological categories for topology and fuzzy topology? This paper answers the first question by generalizing the Höhle-Šostak foundations for fixed-basis lattice-valued topology and the Rodabaugh foundations for variable-basis lattice-valued topology using semi-quantales; and it answers the second question by giving necessary and sufficient conditions under which certain theories – the very ones generating powerset theories generating (fuzzy) topological theories in the sense of this paper – are algebraic theories, and these conditions use unital quantales. The algebraic conditions answering the second question are much stronger than those answering the first question. The syntactic benefits of having an algebraic theory as a foundation for the powerset theory underlying a (fuzzy) topological theory are explored; the relationship between these two specific questions is discussed; the role of pseudo-adjoints is identified in variable-basis powerset theories which are algebraically generated; the relationships between topological theories in the sense of Adámek-Herrlich-Strecker and topological theories in the sense of this paper are fully resolved; lower-image operators introduced for fixed-basis mathematics are completely described in terms of standard image operators; certain algebraic theories are given which determine powerset theories determining a new class of variable-basis categories for topology and fuzzy topology using new preimage operators; and the theories of this paper are undergirded throughout by several extensive inventories of examples.

MSC:

54A40 Fuzzy topology
54B30 Categorical methods in general topology
06F07 Quantales
18B99 Special categories
18C10 Theories (e.g., algebraic theories), structure, and semantics

References:

[1] U. Höhle and A. P. \vSostak, “Axiomatic foundations of fixed-basis fuzzy topology,” in Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, U. Höhle and S. E. Rodabaugh, Eds., vol. 3 of The Handbooks of Fuzzy Sets Series, pp. 123-272, Kluwer Academic Publishers, Boston, Mass, USA, 1999, chapter 3. · Zbl 0977.54006
[2] S. E. Rodabaugh, “Categorical foundations of variable-basis fuzzy topology,” in Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, U. Höhle and S. E. Rodabaugh, Eds., vol. 3 of The Handbooks of Fuzzy Sets Series, pp. 273-388, Kluwer Academic Publishers, Boston, Mass, USA, 1999, chapter 4. · Zbl 0968.54003
[3] E. G. Manes, Algebraic Theories, Springer, New York, NY, USA, 1976. · Zbl 0353.18007
[4] S. E. Rodabaugh, “Necessary and sufficient conditions for powersets in Set and Set\times C to form algebraic theories,” in Fuzzy Logics and Related Structures: Abstracts of 26th Linz Seminar on Fuzzy Set Theory, S. Gottwald, P. Hájek, U. Höhle, and E. P. Klement, Eds., pp. 89-97, Universitätsdirektion Johannes Kepler Universtät, Bildungszentrum St. Magdalena, Linz, Austria, February 2005, (A-4040, Linz).
[5] S. E. Rodabaugh, “Relationship of algebraic theories to powersets over objects in Set and Set\times C,” preprint. · Zbl 1307.18003
[6] J. Adámek, H. Herrlich, and G. E. Strecker, Abstract and Concrete Categories: The Joy of Cats, Pure and Applied Mathematics (New York), John Wiley & Sons, New York, NY, USA, 1990. · Zbl 0695.18001
[7] C. De Mitri and C. Guido, “G-fuzzy topological spaces and subspaces,” Rendiconti del Circolo Matematico di Palermo. Serie II. Supplemento, no. 29, pp. 363-383, 1992. · Zbl 0789.54003
[8] C. De Mitri and C. Guido, “Some remarks on fuzzy powerset operators,” Fuzzy Sets and Systems, vol. 126, no. 2, pp. 241-251, 2002. · Zbl 1019.18001 · doi:10.1016/S0165-0114(01)00024-0
[9] C. De Mitri, C. Guido, and R. E. Toma, “Fuzzy topological properties and hereditariness,” Fuzzy Sets and Systems, vol. 138, no. 1, pp. 127-147, 2003. · Zbl 1047.54004 · doi:10.1016/S0165-0114(02)00368-8
[10] A. Frascella and C. Guido, “Structural lattices and ground categories of L-sets,” International Journal of Mathematics and Mathematical Sciences, vol. 2005, no. 17, pp. 2783-2803, 2005, in \cite{28}, 53-54. · Zbl 1088.18003 · doi:10.1155/IJMMS.2005.2783
[11] A. Frascella and C. Guido, “Topological categories of L-sets and (L,M)-topological spaces on structured lattices,” in Fuzzy Logics and Related Structures: Abstracts of 26th Linz Seminar on Fuzzy Set Theory, S. Gottwald, P. Hájek, U. Höhle, and E. P. Klement, Eds., p. 50, Universitätsdirektion Johannes Kepler Universtät, Bildungszentrum St. Magdalena, Linz, Austria, February 2005, (A-4040, Linz).
[12] C. Guido, “The subspace problem in the traditional point set context of fuzzy topology,” Quaestiones Mathematicae, vol. 20, no. 3, pp. 351-372, 1997. · Zbl 0895.54003 · doi:10.1080/16073606.1997.9632013
[13] C. Guido, “Powerset operators based approach to fuzzy topologies on fuzzy sets,” in Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, vol. 20 of Trends in Logic-Studia Logica Library, pp. 401-413, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003, chapter 15. · Zbl 1041.54009
[14] U. Höhle, Many Valued Topology and Its Applications, Kluwer Academic Publishers, Boston, Mass, USA, 2001. · Zbl 0969.54002
[15] G. Birkhoff, Lattice Theory, vol. 25 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI, USA, 3rd edition, 1967. · Zbl 0153.02501
[16] C. J. Mulvey and M. Nawaz, “Quantales: quantal sets,” in Non-Classical Logics and Their Applications to Fuzzy Subsets (Linz, 1992), U. Höhle and E. P. Klement, Eds., vol. 32 of Theory and Decision Library. Series B: Mathematical and Statistical Methods, pp. 159-217, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995. · Zbl 0838.06014
[17] K. I. Rosenthal, Quantales and Their Applications, vol. 234 of Pitman Research Notes in Mathematics, Longman Scientific & Technical, Burnt Mill, Harlow, UK, 1990. · Zbl 0703.06007
[18] P. T. Johnstone, Stone Spaces, vol. 3 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, 1982. · Zbl 0499.54001
[19] E. P. Klement, R. Mesiar, and E. Pap, Triangular Norms, vol. 8 of Trends in Logic-Studia Logica Library, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000. · Zbl 0972.03002
[20] S. E. Rodabaugh, “Powerset operator based foundation for point-set lattice-theoretic (poslat) fuzzy set theories and topologies,” Quaestiones Mathematicae, vol. 20, no. 3, pp. 463-530, 1997. · Zbl 0911.04003 · doi:10.1080/16073606.1997.9632018
[21] S. E. Rodabaugh, “Powerset operator foundations for poslat fuzzy set theories and topologies,” in Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, U. Höhle and S. E. Rodabaugh, Eds., vol. 3 of The Handbooks of Fuzzy Sets Series, pp. 91-116, Kluwer Academic Publishers, Boston, Mass, USA, 1999, chapter 2. · Zbl 0974.03047
[22] S. E. Rodabaugh, “Axiomatic foundations for uniform operator quasi-uniformities,” in Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, vol. 20 of Trends in Logic-Studia Logica Library, pp. 199-233, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003, chapter 7. · Zbl 1041.54012
[23] S. E. Rodabaugh, “A categorical accommodation of various notions of fuzzy topology: preliminary report,” in Proceedings of the 3rd International Seminar on Fuzzy Set Theory, E. P. Klement, Ed., vol. 3, pp. 119-152, Universitätsdirektion Johannes Kepler Universtät, Linz, Austria, 1981, (A-4040). · Zbl 0511.54005
[24] S. E. Rodabaugh, “A categorical accommodation of various notions of fuzzy topology,” Fuzzy Sets and Systems, vol. 9, no. 3, pp. 241-265, 1983. · Zbl 0527.54005 · doi:10.1016/S0165-0114(83)80026-8
[25] S. E. Rodabaugh, “Point-set lattice-theoretic topology,” Fuzzy Sets and Systems, vol. 40, no. 2, pp. 297-345, 1991. · Zbl 0733.54003 · doi:10.1016/0165-0114(91)90164-L
[26] S. E. Rodabaugh, “Categorical frameworks for Stone representation theories,” in Applications of Category Theory to Fuzzy Subsets, S. E. Rodabaugh, E. P. Klement, and U. Höhle, Eds., vol. 14 of Theory and Decision Library. Series B: Mathematical and Statistical Methods, pp. 177-231, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992, chapter 7. · Zbl 0789.18005
[27] S. E. Rodabaugh, “A point-set lattice-theoretic framework T which contains LOC as a subcategory of singleton spaces and in which there are general classes of Stone representation and compactification theorems,” February 1986 / April 1987, Youngstown State University Central Printing Office, Youngstown, Ohio, USA.
[28] S. Jenei, “Structure of Girard monoids on [0,1],” in Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, S. E. Rodabaugh and E. P. Klement, Eds., vol. 20 of Trends in Logic-Studia Logica Library, pp. 277-308, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003, chapter 10. · Zbl 1036.03035
[29] A. P. \vSostak, “On a fuzzy syntopogeneous structure,” Quaestiones Mathematicae, vol. 20, no. 3, pp. 431-463, 1997.
[30] P. Eklund, “Category theoretic properties of fuzzy topological spaces,” Fuzzy Sets and Systems, vol. 13, no. 3, pp. 303-310, 1984. · Zbl 0546.54009 · doi:10.1016/0165-0114(84)90064-2
[31] P. Eklund, “A comparison of lattice-theoretic approaches to fuzzy topology,” Fuzzy Sets and Systems, vol. 19, no. 1, pp. 81-87, 1986. · Zbl 0603.54003
[32] P. Eklund, Categorical fuzzy topology, Doctoral Dissertation. · Zbl 0608.54002
[33] J. A. Goguen, “L-fuzzy sets,” Journal of Mathematical Analysis and Applications, vol. 18, pp. 145-174, 1967. · Zbl 0145.24404 · doi:10.1016/0022-247X(67)90189-8
[34] S. E. Rodabaugh, “Separation axioms: representation theorems, compactness, and compactifications,” in Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, vol. 3 of The Handbooks of Fuzzy Sets Series, pp. 481-552, Kluwer Academic Publishers, Boston, Mass, USA, 1999, chapter 7. · Zbl 0968.54004
[35] C. L. Chang, “Fuzzy topological spaces,” Journal of Mathematical Analysis and Applications, vol. 24, no. 1, pp. 182-190, 1968. · Zbl 0167.51001 · doi:10.1016/0022-247X(68)90057-7
[36] J. A. Goguen, “The fuzzy Tychonoff theorem,” Journal of Mathematical Analysis and Applications, vol. 43, pp. 734-742, 1973. · Zbl 0278.54003 · doi:10.1016/0022-247X(73)90288-6
[37] U. Höhle, “Upper semicontinuous fuzzy sets and applications,” Journal of Mathematical Analysis and Applications, vol. 78, no. 2, pp. 659-673, 1980. · Zbl 0462.54002 · doi:10.1016/0022-247X(80)90173-0
[38] U. Höhle and A. P. \vSostak, “A general theory of fuzzy topological spaces,” Fuzzy Sets and Systems, vol. 73, no. 1, pp. 131-149, 1995. · Zbl 0948.54003 · doi:10.1016/0165-0114(94)00368-H
[39] W. Kotzé, “Lifting of sobriety concepts with particular reference to (L,M)-topological spaces,” in Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, S. E. Rodabaugh and E. P. Klement, Eds., vol. 20 of Trends in Logic-Studia Logica Library, pp. 415-426, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003, chapter 16. · Zbl 1054.54005
[40] T. Kubiak, On fuzzy topologies, Doctoral Dissertation. · Zbl 1041.54010
[41] T. Kubiak and A. P. \vSostak, “Lower set-valued fuzzy topologies,” Quaestiones Mathematicae, vol. 20, no. 3, pp. 423-429, 1997. · Zbl 0890.54005 · doi:10.1080/16073606.1997.9632016
[42] S. A. Solovyov, “On the category Set(JCPos),” Fuzzy Sets and Systems, vol. 157, no. 3, pp. 459-465, 2006. · Zbl 1081.18007 · doi:10.1016/j.fss.2005.06.007
[43] A. P. \vSostak, “On a fuzzy topological structure,” Rendiconti del Circolo Matematico di Palermo. Serie II. Supplemento, no. 11, pp. 89-103, 1985. · Zbl 0638.54007
[44] S. A. Solovyov, “Categories of lattice-valued sets as categories of arrows,” Fuzzy Sets and Systems, vol. 157, no. 6, pp. 843-854, 2006. · Zbl 1090.18001 · doi:10.1016/j.fss.2005.12.004
[45] A. P. \vSostak, “On a category for fuzzy topology,” Zbornik Radova Filozofskog Fakulteta u Ni\vsu. Serija Matematika, no. 2, pp. 61-67, 1988. · Zbl 0685.54006
[46] A. P. \vSostak, “On compactness and connectedness degrees of fuzzy sets in fuzzy topological spaces,” in General Topology and Its Relations to Modern Analysis and Algebra, Proceedings of the V-th Prague Topological Symposium (Prague, 1986), vol. 16 of Res. Exp. Math., pp. 519-532, Heldermann, Berlin, Germany, 1988. · Zbl 0638.54008
[47] A. P. \vSostak, “Two decades of fuzzy topology: basic ideas, notions, and results,” Russian Mathematical Surveys, vol. 44, no. 6, pp. 125-186, 1989. · Zbl 0716.54004 · doi:10.1070/RM1989v044n06ABEH002295
[48] A. P. \vSostak, “On some modifications of fuzzy topology,” Matemati\vcki Vesnik, vol. 41, no. 1, pp. 51-64, 1989. · Zbl 0705.54007
[49] A. P. \vSostak, “On the neighborhood structure of fuzzy topological spaces,” Zbornik Radova Filozofskog Fakulteta u Ni\vsu. Serija Matematika, no. 4, pp. 7-14, 1990.
[50] A. P. \vSostak, “Towards the concept of a fuzzy category,” in Mathematics, vol. 562 of Latv. Univ. Zin\Bat. Raksti, pp. 85-94, Latv. Univ., Riga, Latvia, 1991.
[51] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338-353, 1965. · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[52] A. P. \vSostak, “On some fuzzy categories related to category L-TOP of L-topological spaces,” in Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, S. E. Rodabaugh and E. P. Klement, Eds., vol. 20 of Trends in Logic-Studia Logica Library, pp. 337-372, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003, chapter 12. · Zbl 1052.54005
[53] U. Höhle and S. E. Rodabaugh, Eds., Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, vol. 3 of The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Boston, Mass, USA, 1999. · Zbl 0942.00008
[54] S. E. Rodabaugh and E. P. Klement, Eds., Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, vol. 20 of Trends in Logic-Studia Logica Library, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003. · Zbl 1020.00006
[55] S. E. Rodabaugh, E. P. Klement, and U. Höhle, Eds., Applications of Category Theory to Fuzzy Subsets, vol. 14 of Theory and Decision Library. Series B: Mathematical and Statistical Methods, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992. · Zbl 0741.00078
[56] U. Höhle, “Sheaves on quantales,” in Fuzzy Logics and Related Structures: Abstracts of 26th Linz Seminar on Fuzzy Set Theory, S. Gottwald, P. Hájek, U. Höhle, and E. P. Klement, Eds., p. 59, Universitätsdirektion Johannes Kepler Universtät, Bildungszentrum St. Magdalena, Linz, Austria, February 2005, (A-4040, Linz).
[57] U. Höhle, “Fuzzy sets and sheaves,” in Mathematics of Fuzzy Systems: Abstracts of 25th Linz Seminar on Fuzzy Set Theory, E. P. Klement and E. Pap, Eds., pp. 68-69, Universitätsdirektion Johannes Kepler Universtät, Bildungszentrum St. Magdalena, Linz, Austria, February 2004, (A-4040, Linz), in submission.
[58] E. P. Klement and E. Pap, Eds., “Mathematics of Fuzzy Systems: Abstracts of 25th Linz Seminar on Fuzzy Set Theory,” Universitätsdirektion Johannes Kepler Universtät, Bildungszentrum St. Magdalena, Linz, Austria, February 2004, (A-4040, Linz).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.