×

Unified Poincaré and Hardy inequalities with sharp constants for convex domains. (English) Zbl 1145.26005

The authors prove five attractive theorems. The main result reads as follows:
Let \(\Omega\) be an open and convex set in \({\mathbb R}^n\). If the inradius \(\delta_0:=\delta_0(\Omega)\) is finite, then
\[ \int_\Omega| \nabla f| ^2\,dx\geq \frac 14 \int_\Omega\frac{| f| ^2}{\delta^2}\,dx+ \frac{\lambda_0^2}{\delta^2_0} \int_\Omega| f| ^2\,dx,\quad\forall\,f\in H_0^1(\Omega),\tag {\(\ast\)} \]
where \(\lambda_0\) is the Lamb constant. The inequality \((*)\) is sharp for all dimensions \(n\geq 1.\) The factor \(\lambda_0^2\) in \((*)\) is actually attained for any finite interval \((a,b)\subset{\mathbb R}\) and for all domain of the form \((a,b)\times\mathbb R^{n-1}\subset\mathbb R^n\) \(n\geq 2\), and their linear transformations.

MSC:

26D15 Inequalities for sums, series and integrals
Full Text: DOI

References:

[1] and , (eds.) Handbook of Mathematical Functions, (Dover Publ., New York, 1968).
[2] Avkhadiev, Lobachevskii J. Math. 21 pp 3– (2006)
[3] Avkhadiev, Proc. Steklov Inst. Math 255255 pp 1– (2006)
[4] Isoperimetric Inequalities and Applications (Pitman Adv. Publ. Program, Boston-London-Melbourne, 1980). · Zbl 0436.35063
[5] and , Table of inequalities in elliptic boundary value problems, in: Recent Progress in Inequalities, edited by V. Milovanovic (Kluwer Academic Publ., Dordrecht, 1998), pp. 97–125. · Zbl 0914.35042
[6] Brezis, Ann. Scuola Sup. Pisa Cl. Sci. 25(4) pp 217–
[7] Davies, Quart. J. Math. Oxford 46 pp 2– (1995)
[8] Davies, Oper. Theory Adv. Appl. 110 pp 55– (1999)
[9] Fillippas, Calc. Var. Partial Differential Equations 25(4) pp 491– (2005)
[10] Vorlesungen über Inhalt, Oberfläche und Isoperimetrie (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957). · Zbl 0078.35703
[11] , and , Inequalities (Cambridge Univ. Press, Cambridge, 1934).
[12] Hersch, J. Math. Phys. Appl. 11 pp 387– (1960)
[13] Hoffmann-Ostenhof, J. Func. Anal. 189 pp 539– (2002)
[14] Differentialgleichungen. Lösungsmethoden und Lösungen (B. G. Teubner, Stuttgart, 1977).
[15] Lamb, Proc. Lond. Math. Soc. pp 270– (1884)
[16] Marcus, Trans. Amer. Math. Soc. 350 pp 3237– (1998)
[17] Matskewich, Nonlinear Anal. 28 pp 1601– (1997)
[18] Payne, Applicable Anal. 3 pp 295– (1973)
[19] and , Isoperimetric Inequalities in Mathematical Physics (Princeton University Press, Princeton, 1951). · Zbl 0044.38301
[20] Theory of the Bessel Functions, Second edition (Cambridge Univ. Press, Cambridge, 1962).
[21] Committee for the calculation of math. tables, British Assoc. Adv. Sci. Mathematical Tables, Vol. VI Bessel Functions, Part I, Functions of orders zero and unity (Cambridge Univ. Press, Cambridge, 1937).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.