×

A characterization of convex calibrable sets in \(\mathbb R^N\) with respect to anisotropic norms. (English) Zbl 1144.52002

Summary: A set is called “calibrable” if its characteristic function is an eigenvector of the subgradient of the total variation. The main purpose of this paper is to characterize the “\(\varphi\)-calibrability” of bounded convex sets in \(\mathbb R^N\) with respect to a norm \(\varphi\) (called anisotropy in the sequel) by the anisotropic mean \(\varphi\)-curvature of its boundary. It extends to the anisotropic and crystalline cases the known analogous results in the Euclidean case. As a by-product of our analysis we prove that any convex body \(C\) satisfying a \(\varphi\)-ball condition contains a convex \(\varphi\)-calibrable set \(K\) such that, for any \(V\in [|K|,|C|]\), the subset of \(C\) of volume \(V\) which minimizes the \(\varphi\)-perimeter is unique and convex. We also describe the anisotropic total variation flow with initial data the characteristic function of a bounded convex set.

MSC:

52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
35J70 Degenerate elliptic equations
49J40 Variational inequalities
35K65 Degenerate parabolic equations

References:

[1] F. Alter, V. Caselles, Uniqueness of the Cheeger set of a convex body, Preprint CVGMT, Scuola Normale di Pisa, 2007; F. Alter, V. Caselles, Uniqueness of the Cheeger set of a convex body, Preprint CVGMT, Scuola Normale di Pisa, 2007 · Zbl 1167.52005
[2] Alter, F.; Caselles, V.; Chambolle, A., A characterization of convex calibrable sets in \(R^N\), Math. Ann., 332, 2, 329-366 (2005) · Zbl 1108.35073
[3] Alter, F.; Caselles, V.; Chambolle, A., Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow, Interfaces Free Bound., 7, 1, 29-53 (2005) · Zbl 1084.49003
[4] Amar, M.; Bellettini, G., A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11, 1, 91-133 (1994) · Zbl 0842.49016
[5] Ambrosio, L., Movimenti minimizzanti, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19, 191-246 (1995) · Zbl 0957.49029
[6] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs (2000), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York · Zbl 0957.49001
[7] Andreu, F.; Ballester, C.; Caselles, V.; Mazón, J. M., The Dirichlet problem for the total variation flow, J. Funct. Anal., 180, 2, 347-403 (2001) · Zbl 0973.35109
[8] Andreu, F.; Caselles, V.; Mazón, J. M., A parabolic quasilinear problem for linear growth functionals, Rev. Mat. Iberoamericana, 18, 1, 135-185 (2002) · Zbl 1010.35063
[9] Andreu-Vaillo, F.; Caselles, V.; Mazón, J. M., Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Mathematics, vol. 223 (2004), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1053.35002
[10] Anzellotti, G., Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4), 135, 293-318 (1984), 1983 · Zbl 0572.46023
[11] Atkinson, F. V.; Peletier, L. A., Bounds for vertical points of solutions of prescribed mean curvature type equations. I, Proc. Roy. Soc. Edinburgh Sect. A, 112, 1-2, 15-32 (1989) · Zbl 0685.35022
[12] Barozzi, E., The curvature of a set with finite area, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 5, 2, 149-159 (1994) · Zbl 0809.49038
[13] Bellettini, G.; Caselles, V.; Chambolle, A.; Novaga, M., Crystalline mean curvature flow of convex sets, Arch. Ration. Mech. Anal., 179, 1, 109-152 (2006) · Zbl 1148.53049
[14] Bellettini, G.; Caselles, V.; Novaga, M., The total variation flow in \(R^N\), J. Differential Equations, 184, 2, 475-525 (2002) · Zbl 1036.35099
[15] Bellettini, G.; Novaga, M., Approximation and comparison for nonsmooth anisotropic motion by mean curvature in \(R^N\), Math. Models Methods Appl. Sci., 10, 1, 1-10 (2000) · Zbl 1016.53048
[16] Bellettini, G.; Novaga, M.; Paolini, M., Facet-breaking for three-dimensional crystals evolving by mean curvature, Interfaces Free Bound., 1, 1, 39-55 (1999) · Zbl 0934.49023
[17] Bellettini, G.; Novaga, M.; Paolini, M., Characterization of facet breaking for nonsmooth mean curvature flow in the convex case, Interfaces Free Bound., 3, 4, 415-446 (2001) · Zbl 0989.35127
[18] Bellettini, G.; Novaga, M.; Paolini, M., On a crystalline variational problem. I. First variation and global \(L^\infty\) regularity, Arch. Ration. Mech. Anal., 157, 3, 165-191 (2001) · Zbl 0976.58016
[19] Bellettini, G.; Novaga, M.; Paolini, M., On a crystalline variational problem. II. BV regularity and structure of minimizers on facets, Arch. Ration. Mech. Anal., 157, 3, 193-217 (2001) · Zbl 0976.58017
[20] Bellettini, G.; Paolini, M., Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25, 3, 537-566 (1996) · Zbl 0873.53011
[21] Brézis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, vol. 5 (1973), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam, Notas de Matemática (50) · Zbl 0252.47055
[22] Brézis, H.; Kinderlehrer, D., The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J., 23, 831-844 (1973/1974) · Zbl 0278.49011
[23] Caselles, V.; Chambolle, A., Anisotropic curvature-driven flow of convex sets, Nonlinear Anal., 65, 8, 1547-1577 (2006) · Zbl 1107.35069
[24] Caselles, V.; Chambolle, A.; Novaga, M., Uniqueness of the Cheeger set of a convex body, Pacific J. Math., 232, 1, 77-90 (2007) · Zbl 1221.35171
[25] Chambolle, A., An algorithm for mean curvature motion, Interfaces Free Bound., 6, 2, 195-218 (2004) · Zbl 1061.35147
[26] Chambolle, A., An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20, 1-2, 89-97 (2004), Special issue on mathematics and image analysis · Zbl 1366.94048
[27] Giusti, E., On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions, Invent. Math., 46, 2, 111-137 (1978) · Zbl 0381.35035
[28] Gonzalez, E. H.A.; Massari, U., Variational mean curvatures, Partial Differential Equations, II. Partial Differential Equations, II, Turin, 1993. Partial Differential Equations, II. Partial Differential Equations, II, Turin, 1993, Rend. Sem. Mat. Univ. Politec. Torino, 52, 1, 1-28 (1994) · Zbl 0819.49025
[29] Kawohl, B.; Fridman, V., Isoperimetric estimates for the first eigenvalue of the \(p\)-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin., 44, 4, 659-667 (2003) · Zbl 1105.35029
[30] Kawohl, B.; Lachand-Robert, T., Characterization of Cheeger sets for convex subsets of the plane, Pacific J. Math., 225, 1, 103-118 (2006) · Zbl 1133.52002
[31] Korevaar, N., Capillary surface convexity above convex domains, Indiana Univ. Math. J., 32, 1, 73-81 (1983) · Zbl 0481.35023
[32] Korevaar, N.; Simon, L., Equations of mean curvature type with contact angle boundary conditions, (Geometric Analysis and the Calculus of Variations (1996), Internat. Press: Internat. Press Cambridge, MA), 175-201 · Zbl 0932.35091
[33] Lichnewsky, A.; Temam, R., Pseudosolutions of the time-dependent minimal surface problem, J. Differential Equations, 30, 3, 340-364 (1978) · Zbl 0368.49016
[34] Meyer, Y., Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, vol. 22 (2001), American Mathematical Society: American Mathematical Society Providence, RI, The fifteenth Dean Jacqueline B. Lewis memorial lectures · Zbl 0987.35003
[35] Moll, J. S., The anisotropic total variation flow, Math. Ann., 332, 1, 177-218 (2005) · Zbl 1109.35061
[36] Rosales, C., Isoperimetric regions in rotationally symmetric convex bodies, Indiana Univ. Math. J., 52, 5, 1201-1214 (2003) · Zbl 1088.53039
[37] Schneider, R., Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44 (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0798.52001
[38] Simon, L.; Spruck, J., Existence and regularity of a capillary surface with prescribed contact angle, Arch. Ration. Mech. Anal., 61, 1, 19-34 (1976) · Zbl 0361.35014
[39] Stredulinsky, E.; Ziemer, W. P., Area minimizing sets subject to a volume constraint in a convex set, J. Geom. Anal., 7, 4, 653-677 (1997) · Zbl 0940.49025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.