×

On the proximal point algorithm. (English) Zbl 1144.49007

Summary: Let \(A\) be a maximal monotone operator in a real Hilbert space \(H\) and let \(\{u_n\}\) be the sequence in \(H\) given by the proximal point algorithm, defined by \(u_n =(I+c_n A)^{ - 1}(u_{n - 1} - f_n ), \forall n\geq 1\), with \(u _{0}=z\), where \(c_n >0\) and \(f_n \in H\). We show, among other things, that under suitable conditions, \(u_n\) converges weakly or strongly to a zero of \(A\) if and only if \(\lim \inf_{n\rightarrow +\infty} |w_n |<+\infty\), where \(w_n =(\sum _{k=1}^n c_k )^{ - 1}\sum _{k=1}^n c_k u_k\) . Our results extend previous results by several authors who obtained similar results by assuming \(A ^{ - 1}(0)\neq \emptyset \).

MSC:

49J40 Variational inequalities
47J20 Variational and other types of inequalities involving nonlinear operators (general)
47H05 Monotone operators and generalizations
Full Text: DOI

References:

[1] Baillon, J.B.: Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert. C.R. Hebd. Acad. Sci. Paris, Ser. A, B 280, A1511–A1514 (1975) · Zbl 0307.47006
[2] Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland Mathematics Studies, vol. 5. North-Holland, Amsterdam (1973) · Zbl 0252.47055
[3] Morosanu, G.: Nonlinear Evolution Equations and Applications. Mathematics and Its Applications, vol. 26. Reidel, Dordrecht (1988)
[4] Djafari Rouhani, B.: Ergodic theorems for nonexpansive sequences in Hilbert spaces and related problems. Ph.D. Thesis, Yale University, part I, pp. 1–76 (1981)
[5] Djafari Rouhani, B.: Asymptotic behaviour of quasi-autonomous dissipative systems in Hilbert spaces. J. Math. Anal. Appl. 147, 465–476 (1990) · Zbl 0726.47032 · doi:10.1016/0022-247X(90)90361-I
[6] Djafari Rouhani, B.: Asymptotic behaviour of almost nonexpansive sequences in a Hilbert space. J. Math. Anal. Appl. 151, 226–235 (1990) · Zbl 0723.46015 · doi:10.1016/0022-247X(90)90253-C
[7] Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976) · Zbl 0358.90053 · doi:10.1137/0314056
[8] Brézis, H., Lions, P.L.: Produits infinis de résolvantes. Isr. J. Math. 29, 329–345 (1978) · Zbl 0387.47038 · doi:10.1007/BF02761171
[9] Bruck, R.E.: An iterative solution of a variational inequality for certain monotone operators in Hilbert space. Bull. Am. Math. Soc. 81, 890–892 (1975). Corrigendum 82, 353 (1976) · Zbl 0332.49005 · doi:10.1090/S0002-9904-1975-13874-2
[10] Lions, P.L.: Une méthode itérative de résolution d’une inéquation variationnelle. Isr. J. Math. 31, 204–208 (1978) · Zbl 0395.49013 · doi:10.1007/BF02760552
[11] Edelstein, M.: The construction of an asymptotic center with a fixed-point property. Bull. Am. Math. Soc. 78, 206–208 (1972) · Zbl 0231.47029 · doi:10.1090/S0002-9904-1972-12918-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.