×

Numerical simulation of anisotropic surface diffusion with curvature-dependent energy. (English) Zbl 1143.80343

Summary: The aim of this paper is the numerical simulation of surface diffusion processes in the presence of a strong anisotropy and curvature dependence in the surface energy. We derive semi-implicit finite element discretizations based on a splitting into three second-order equations. The discretization we use yields indefinite linear systems for the nodal values of the height function, the curvature concentration, and the chemical potential. We provide several numerical examples and parametric studies with respect to some of the parameters in the surface energy and with respect to the coverage. The results, to our knowledge the first that have been obtained for this model, confirm theoretical predictions, namely partial faceting of the surfaces with rounded corners.

MSC:

80M25 Other numerical methods (thermodynamics) (MSC2010)
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
Full Text: DOI

References:

[1] Bänsch, E.; Morin, P.; Nochetto, R., Surface diffusion of graphs: variational formulation, error analysis, and simulation, SIAM J. Numer. Anal., 42, 773-799 (2004) · Zbl 1073.65098
[2] Bänsch, E.; Morin, P.; Nochetto, R., Finite element methods for surface diffusion, (Colli, P.; Verdi, C.; Visintin, A., Free Boundary Problems (2003), Birkhäuser: Birkhäuser Basel), 53-63 · Zbl 1039.65067
[3] Baras, P.; Duchon, J.; Robert, R., Evolution d’une interface par diffusion de surface, Commun. Partial Differ. Eq., 9, 313-335 (1984) · Zbl 0542.35078
[4] Bauer, G.; Darhuber, A. A.; Holy, V., Self-assembled germanium-dot multilayers embedded in silicon, Cryst. Res. Technol., 34, 197-209 (1999)
[5] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer: Springer New York · Zbl 0788.73002
[6] Cahn, J. W.; Taylor, J. E., Surface motion by surface diffusion, Acta Metall. Mater., 42, 1045-1063 (1994)
[7] Carter, W. C.; Roosen, A. R.; Cahn, J. W.; Taylor, J. E., Shape evolution by surface diffusion and surface attachment limited kinetics on completely faceted surfaces, Acta Metall. Mater., 43, 4309-4323 (1995)
[8] Carter, W. C.; Taylor, J. E.; Cahn, J. W., Variational methods for microstructural evolution, JOM, 49, 30-36 (1997)
[9] Davi, F.; Gurtin, M. E., On the motion of a phase interface by surface diffusion, J. Appl. Math. Phys., 41, 782-811 (1990) · Zbl 0850.76680
[10] Deckelnick, K.; Dziuk, G., A fully discrete numerical scheme for weighted mean curvature flow, Numer. Math., 91, 423-452 (2002) · Zbl 0999.65103
[11] K.Deckelnick, G.Dziuk, C.M.Elliott, Fully discrete semi-implicit second order splitting for anisotropic surface diffusion of graphs, Isaac Newton Institute, Cambridge, 2003, Preprint; K.Deckelnick, G.Dziuk, C.M.Elliott, Fully discrete semi-implicit second order splitting for anisotropic surface diffusion of graphs, Isaac Newton Institute, Cambridge, 2003, Preprint
[12] Droske, M.; Rumpf, M., A level set formulation for Willmore flow, Interfaces Free Boundaries, 6, 361-368 (2004) · Zbl 1062.35028
[13] Elliott, C. M.; Garcke, H., Existence results for diffusive surface motion laws, Adv. Math. Sci. Appl., 7, 465-488 (1997)
[14] Golovin, A. A.; Davis, S. H., Effect of anisotropy on morphological instability in the freezing of a hypercooled melt, Physica D, 116, 363-391 (1998) · Zbl 0910.76089
[15] Golovin, A. A.; Davis, S. H.; Nepomnyashchy, A. A., A model for facetting in a kinetically controlled crystal growth, Phys. Rev. E, 59, 803-825 (1999)
[16] Gurtin, M. E., Thermomechanics of Evolving Phase-Boundaries in the Plane (1993), Oxford University Press: Oxford University Press Oxford · Zbl 0787.73004
[17] Gurtin, M. E.; Jabbour, M. E., Interface evolution in three dimensions with curvature-dependent energy and surface diffusion: interface-controlled evolution, phase transitions, epitaxial growth of elastic films, Arch. Rat. Mech. Anal., 163, 171-208 (2002) · Zbl 1053.74005
[18] Jonsdottir, F.; Freund, L. B., Equilibrium surface roughness of a strained epitaxial film due to surface diffusion induced by interface misfit dislocations, Mech. Mater., 20, 337-349 (1995)
[19] Lions, J. L.; Magenes, E., Non-Homogenous Boundary Value Problems and Applications, vol. I (1972), Springer: Springer Berlin, Heidelberg, New York · Zbl 0223.35039
[20] Lods, V.; Piétrus, A.; Rakotoson, J. M., Mathematical study of the equation describing the evolution of the surface of a film, Asymptotic Anal., 33, 67-91 (2003) · Zbl 1114.74468
[21] Mullins, W. W., Theory of thermal grooving, J. Appl. Phys., 28, 333-339 (1957)
[22] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM: SIAM Philadelphia · Zbl 1002.65042
[23] Savina, T. V.; Golovin, A. A.; Davis, S. H.; Nepomnyashchy, A. A.; Voorhees, P. W., On faceting of a growing crystal surface by surface diffusion, Phys. Rev. E, 67, 1-16 (2003)
[24] Stewart, J.; Goldenfeld, N. D., Spinodal decomposition of a crystal surface, Phys. Rev. A, 46, 6505-6512 (1992)
[25] Zhang, W.; Gladwell, I., Evolution of two-dimensional crystal morphologies by surface diffusion with anisotropic surface free energies, Comput. Mater. Sci., 27, 461-470 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.