×

A mesh independent superlinear algorithm for some nonlinear nonsymmetric elliptic systems. (English) Zbl 1142.65439

Summary: The numerical solution of nonlinear elliptic transport systems is considered. An outer-inner (damped inexact Newton plus PCG type) iteration is proposed for the finite element discretization of the problem, and mesh independent superlinear convergence is proved for both the outer and inner iterations. Numerical experiments are enclosed.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Rektorys, K., The method of discretization in time and partial differential equations (1982), Reidel: Reidel Dordrecht, Boston · Zbl 0522.65059
[2] Thomée, V., Galerkin Finite Element Methods for Parabolic Problems (1997), Springer: Springer Berlin · Zbl 0884.65097
[3] Zlatev, Z., Computer treatment of large air pollution models (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, Boston, London · Zbl 0852.65058
[4] Faber, V.; Manteuffel, T.; Parter, S. V., On the theory of equivalent operators and application to the numerical of uniformly elliptic partial differential equations, Adv. in Appl. Math., 11, 109-163 (1990) · Zbl 0718.65043
[5] Křižek, M.; Neittaanmäki, P., Mathematical and numerical modelling in electrical engineering: theory and applications (1996), Kluwer Academic Publishers
[6] Nevanlinna, O., Convergence of Iterations for Linear Equations (1993), Birkhäuser: Birkhäuser Basel · Zbl 0846.47008
[7] Axelsson, O.; Karátson, J., Superlinearly convergent CG methods via equivalent preconditioning for nonsymmetric elliptic operators, Numer. Math., 99, 2, 197-223 (2004) · Zbl 1061.65043
[8] Faragó, I.; Karátson, J., (Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators. Theory and Applications. Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators. Theory and Applications, Advances in Computation, vol. 11 (2002), NOVA Science Publishers: NOVA Science Publishers New York) · Zbl 1030.65117
[9] Karátson, J.; Faragó, I., Variable preconditioning via quasi-Newton methods for nonlinear problems in Hilbert space, SIAM J. Numer. Anal., 41, 4, 1242-1262 (2003) · Zbl 1130.65309
[10] Adams, R. A., Sobolev Spaces (1975), Academic Press · Zbl 0186.19101
[11] Plastock, R., Homeomorphisms between Banach spaces, Trans. Amer. Math. Soc., 200, 169-183 (1974) · Zbl 0291.54009
[12] Axelsson, O., On global convergence of iterative methods, (Iterative Solution of Nonlinear Systems of Equations. Iterative Solution of Nonlinear Systems of Equations, Lecture Notes in Math., vol. 953 (1982), Springer), 1-19 · Zbl 0856.65121
[13] Axelsson, O., A survey of algebraic multilevel iteration (AMLI) methods, BIT, 43 (suppl.), 863-879 (2003) · Zbl 1049.65139
[14] Hackbusch, W., Multigrid Methods and Applications, Springer Series in Computational Mathematics, vol. 4 (1985), Springer: Springer Berlin · Zbl 0577.65118
[15] Rossi, T.; Toivanen, J., A parallel fast direct solver for block tridiagonal systems with separable matrices of arbitrary dimension, SIAM J. Sci. Comput., 20, 5, 1778-1796 (1999), (electronic) · Zbl 0931.65020
[16] Swarztrauber, P. N., The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle, SIAM Rev., 19, 3, 490-501 (1977) · Zbl 0358.65088
[17] Axelsson, O.; Karátson, J., Mesh independent superlinear PCG rates via compact-equivalent operators, SIAM J. Numer. Anal., 45, 4, 1495-1516 (2007), (electronic) · Zbl 1151.65081
[18] Axelsson, O., Iterative Solution Methods (1994), Cambridge University Press · Zbl 0795.65014
[19] Faber, V.; Manteuffel, T.; Parter, S. V., Necessary and sufficient conditions for the existence of a conjugate gradient method, SIAM J. Numer. Anal., 21, 2, 352-362 (1984) · Zbl 0546.65010
[20] Courant, R.; Hilbert, D., Methods of Mathematical Physics II. (1989), Wiley Classics Library, J. Wiley & Sons · Zbl 0729.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.