×

Compact integration factor methods in high spatial dimensions. (English) Zbl 1142.65072

Summary: The dominant cost for integration factor (IF) or exponential time differencing (ETD) methods is the repeated vector-matrix multiplications involving exponentials of discretization matrices of differential operators. Although the discretization matrices usually are sparse, their exponentials are not, unless the discretization matrices are diagonal. For example, a two-dimensional system of \(N\times N\) spatial points, the exponential matrix is of a size of \(N^{2}\times N^{2}\) based on direct representations. The vector-matrix multiplication is of O\((N^{4})\), and the storage of such matrix is usually prohibitive even for a moderate size \(N\).
In this paper, we introduce a compact representation of the discretized differential operators for the IF and ETD methods in both two- and three-dimensions. In this approach, the storage and CPU cost are significantly reduced for both IF and ETD methods such that the use of this type of methods becomes possible and attractive for two- or three-dimensional systems. For the case of two-dimensional systems, the required storage and CPU cost are reduced to O\((N^{2})\) and O\((N^{3})\), respectively. The improvement on three-dimensional systems is even more significant.
We analyze and apply this technique to a class of semi-implicit integration factor method recently developed for stiff reaction-diffusion equations. Direct simulations on test equations along with applications to a morphogen system in two-dimensions and an intra-cellular signaling system in three-dimensions demonstrate an excellent efficiency of the new approach.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35K57 Reaction-diffusion equations

References:

[1] Hou, T. Y.; Lowengrub, J. S.; Shelley, M. J., Removing the stiffness from interfacial flows with surface tension, Journal of Computational Physics, 114, 312 (1994) · Zbl 0810.76095
[2] Beylkin, G.; Keiser, J. M.; Vozovoi, L., A new class of time discretization schemes for the solution of nonlinear PDEs, Journal of Computational Physics, 147, 362-387 (1998) · Zbl 0924.65089
[3] Leo, P. H.; Lowengrub, J. S.; Nie, Q., Microstructural evolution in orthotropic elastic media, Journal of Computational Physics, 157, 44-88 (2000) · Zbl 0960.74076
[4] Jou, H. J.; Leo, P. H.; Lowengrub, J. S., Microstructural evolution in inhomogeneous elastic media, Journal of Computational Physics, 131, 109 (1997) · Zbl 0880.73050
[5] Kassam, A.-K.; Trefethen, L. N., Fourth-order time stepping for stiff PDEs, SIAM Journal on Scientific Computing, 26, 1214-1233 (2005) · Zbl 1077.65105
[6] Du, Q.; Zhu, W., Stability analysis and applications of the exponential time differencing schemes, Journal of Computational Mathematics, 22, 200 (2004) · Zbl 1052.65081
[7] Du, Q.; Zhu, W., Analysis and applications of the exponential time differencing schemes and their contour integration modifications, BIT, Numerische Mathematik, 45, 307-328 (2005) · Zbl 1080.65074
[8] Nie, Q.; Zhang, Y.-T.; Zhao, R., Efficient semi-implicit schemes for stiff systems, Journal of Computational Physics, 214, 521-537 (2006) · Zbl 1089.65094
[9] Cox, S. M.; Matthews, P. C., Exponential time differencing for stiff systems, Journal of Computational Physics, 176, 430-455 (2002) · Zbl 1005.65069
[10] Wan, F. Y.M., An in-core finite difference method for separable boundary value problems on a rectangle, Studies in Applied Mathematics, 52, 103-113 (1973) · Zbl 0264.65062
[11] Friesner, R. A.; Tuckerman, L. S.; Dornblaser, B. C.; Russo, T. V., A method for exponential propagation of large systems of stiff nonlinear differential equations, Journal of Scientific Computing, 4, 327-354 (1989)
[12] Edwards, W. S.; Tuckerman, L. S.; Friesner, R. A.; Sorensen, D. C., Krylov methods for the incompressible Navier-Stokes equations, Journal of Computational Physics, 110, 82-102 (1994) · Zbl 0792.76062
[13] Karniadakis, G. E.; Israeli, M.; Orszag, S. A., High order splitting methods for the incompressible Navier-Stokes equations, Journal of Computational Physics, 97, 414 (1991) · Zbl 0738.76050
[14] Beylkin, G.; Keiser, J. M., On the adaptive numerical solution of nonlinear partial differential equations in wavelet bases, Journal of Computational Physics, 132, 233-259 (1997) · Zbl 0880.65076
[15] Teleman, A. A.; Strigini, M.; Cohen, S. M., Shaping morphogen gradients, Cell, 105, 559-562 (2001)
[16] Wolpert, L.; Beddington, R.; Brockes, J.; Jessel, T.; Lawrence, P.; Meyerowitz, E., Principles of Development (2002), Oxford University press
[17] Gurdon, J. B.; Bourillot, P. Y., Morphogen gradient interpretation, Nature, 413, 797-803 (2001)
[18] Lander, A.; Nie, Q.; Wan, F., Do morphogen gradients arise by diffusion?, Developmental Cell, 2, 785-796 (2002)
[19] Lander, A.; Nie, Q.; Wan, F., Spatially distributed morphogen production and morphogen gradient formation, Mathematical Biosciences and Engineering, 2, 239-262 (2005) · Zbl 1072.92016
[20] Ashe, H. L.; Levine, M., Local inhibition and long-range enhancement of Dpp signal transduction by Sog, Nature, 398, 427-431 (1999)
[21] Bier, E., A unity of opposites, Nature, 398, 375-376 (1999)
[22] Oelgeschlager, M.; Larrain, J.; Geissert, D.; Roberts, E. M., The evolutionarily conserved bmp-binding protein twisted gastrulation promotes bmp signaling, Nature, 405, 757-762 (2000)
[23] Ross, J. J.; Shimmi, O.; Vilmos, P.; Petryk, A.; Kim, H.; Gaudenz, K.; Hermanson, S.; Ekker, S. C.; O’Connor, M. B.; Marsh, J. L., Twisted gastrulation is a conserved extracellular BMP antagonist, Nature, 410, 479-483 (2001)
[24] J. Kao, Q. Nie, A. Teng, F.Y.M. Wan, A.D. Lander, J.L. Marsh, Can morphogen activity be enhanced by its inhibitors? in: Proceedings of the 2nd MIT Conference on Computational Mechanics, 2003, pp. 1729-1733.; J. Kao, Q. Nie, A. Teng, F.Y.M. Wan, A.D. Lander, J.L. Marsh, Can morphogen activity be enhanced by its inhibitors? in: Proceedings of the 2nd MIT Conference on Computational Mechanics, 2003, pp. 1729-1733.
[25] Lou, Y.; Nie, Q.; Wan, F., Effects of Sog on Dpp-receptor binding, SIAM Journal on Applied Mathematics, 65, 1748-1771 (2005) · Zbl 1072.92007
[26] Mizutant, C.; Nie, Q.; Wan, F.; Zhang, Y.-T.; Vilmos, P.; Bier, E.; Marsh, L.; Lander, A., Formation of the bmp activity gradient in the drosophila embryo, Developmental Cell, 8, 6, 915-924 (2005)
[27] A. Lander, Q. Nie, F. Wan, Y.-T. Zhang, Localized over-expression of Dpp receptors in a Drosophila embryo, Preprint, 2007.; A. Lander, Q. Nie, F. Wan, Y.-T. Zhang, Localized over-expression of Dpp receptors in a Drosophila embryo, Preprint, 2007. · Zbl 1167.92003
[28] Whitmarsh, A. J.; Davis, R. J., Structural organization of MAP-kinase signaling modules by Scaffold proteins in yeast and mammals, Trends in Biochemical Sciences, 23, 481-485 (1998)
[29] Morrison, D. K.; Davis, R. J., Regulation of MAP kinase signaling modules by Scaffold proteins in mammals, Annual Review of Cell and Developmental Biology, 19, 91-118 (2003)
[30] Wong, W.; Scott, J. D., AKAP signaling complexes: focal points in space and time, Nature Reviews Molecular Cell Biology, 5, 959-970 (2004)
[31] Park, S. H.; Zarrinpar, A.; Lim, W. A., Rewiring MAP kinase pathways using alternative Scaffold assembly mechanisms, Science, 299, 1061-1064 (2003)
[32] Harris, K.; Lamson, R. E.; Nelson, B.; Hughes, T. R.; Marton, M. J.; Roberts, C. J.; Boone, C.; Pryciak, P. M., Role of scaffolds in MAP kinase pathway specificity revealed by custom design of pathway-dedicated signaling proteins, Current Biology, 11, 1815-1824 (2001)
[33] Dickens, M.; Rogers, J. S.; Cavanagh, J.; Raitano, A.; Xia, Z.; Halpern, J. R.; Greenberg, M. E.; Sawyers, C. L.; Davis, R. J., A cytoplasmic inhibitor of the JNK signal transduction pathway, Science, 277, 693-696 (1997)
[34] Cohen, L.; Henzel, W. J.; Baeuerle, P. A., IKAP is a Scaffold protein of the IKB kinase complex, Nature, 395, 292-296 (1998)
[35] Kortum, R. L.; Lewis, R. E., The molecular Scaffold KSR1 regulates the proliferative and oncogenic potential of cells, Molecular and Cellular Biology, 24, 4407-4416 (2004)
[36] L. Bardwell, R.D. Moore, X.F. Liu, Q. Nie, Spatially-localized Scaffold proteins may simultaneously boost and suppress signaling, Preprint, 2007.; L. Bardwell, R.D. Moore, X.F. Liu, Q. Nie, Spatially-localized Scaffold proteins may simultaneously boost and suppress signaling, Preprint, 2007.
[37] X.F. Liu, Q. Nie, An implicit integration factor method with adaptive mesh refinements, Preprint, 2007.; X.F. Liu, Q. Nie, An implicit integration factor method with adaptive mesh refinements, Preprint, 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.