×

Selective monotonicity preservation in scalar advection. (English) Zbl 1142.65069

Summary: An efficient method for scalar advection is developed that selectively preserves monotonicity. Monotonicity preservation is applied only where the scalar field is likely to contain discontinuities as indicated by significant grid-cell-to-grid-cell variations in a smoothness measure conceptually similar to that used in weighted essentially non-oscillatory methods. In smooth regions, the numerical diffusion associated with monotonicity-preserving methods is avoided. The resulting method, while not globally monotonicity preserving, allows the full accuracy of the underlying advection scheme to be achieved in smooth regions. The violations of monotonicity that do occur are generally very small, as seen in the tests presented here. Strict positivity preservation may be effectively and efficiently obtained through an additional flux correction step.
The underlying advection scheme used to test this methodology is a variant of the piecewise parabolic method that may be applied to multi-dimensional problems using density-corrected dimensional splitting and permits stable semi-Lagrangian integrations using Courant-Friedrichs-Levy numbers larger than one. Two methods for monotonicity preservation are used here: flux correction and modification of the underlying polynomial reconstruction.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws

Software:

SHASTA
Full Text: DOI

References:

[1] Boris, J.; Book, D., Flux-corrected transport. 1. SHASTA, A fluid transport algorithm that works, J. Comput. Phys., 11, 38-69 (1973) · Zbl 0251.76004
[2] Zalesak, S., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 335-362 (1979) · Zbl 0416.76002
[3] van Leer, B., Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme, J. Comput. Phys., 14, 361-370 (1974) · Zbl 0276.65055
[4] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995-1011 (1984) · Zbl 0565.65048
[5] Leveque, R. J., Finite Volume Methods for Hyperbolic Problems (2002), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1010.65040
[6] Colella, P.; Woodward, P., The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54, 174-201 (1984) · Zbl 0531.76082
[7] Carpenter, R.; Droegemeier, K.; Woodward, P.; Hane, C., Application of the piecewise parabolic method (PPM) to meteorological modeling, Mon. Weather Rev., 118, 586-612 (1990)
[8] Liu, X.-D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-212 (1994) · Zbl 0811.65076
[9] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[10] V.G. Weirs, G.V. Candler, Optimization of weighted ENO schemes for DNS of compressible turbulence, in: Proceedings of the 13th AIAA Computational Fluid Dynamics Conference, 1997, pp. 528-538 (AIAA Paper No. 97-1940).; V.G. Weirs, G.V. Candler, Optimization of weighted ENO schemes for DNS of compressible turbulence, in: Proceedings of the 13th AIAA Computational Fluid Dynamics Conference, 1997, pp. 528-538 (AIAA Paper No. 97-1940).
[11] Qiu, J.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods using WENO limiters, SIAM J. Sci. Comput., 26, 907-929 (2005) · Zbl 1077.65109
[12] Zerroukat, M.; Wood, N.; Staniforth, A., A monotonic and positive-definite filter for a semi-Lagrangian inherently conserving and efficient (SLICE) scheme, Q. J. Roy. Meteor. Soc., 131, 2923-2936 (2005)
[13] Sun, W.-Y.; Yeh, K.-S.; Sun, R.-Y., A simple semi-Lagrangian scheme for advection equations, Q. J. Roy. Meteor. Soc., 122, 1211-1226 (1996)
[14] Nair, R.; Côté, J.; Staniforth, A., Montonic cascade interpolation for semi-lagrangian advection, Q. J. Roy. Meteor. Soc., 125, 197-212 (1999)
[15] Skamarock, W., Positive-definite and monotonic limiters for unrestricted-time-step transport schemes, Mon. Weather Rev., 134, 2241-2250 (2006)
[16] Zerroukat, M.; Wood, N.; Staniforth, A., The parabolic spline method (PSM) for conservative transport problems, Int. J. Numer. Meth. Fluids, 51, 11, 1297-1318 (2006) · Zbl 1158.76372
[17] Easter, R., Two modified versions of Bott positive-definite numerical advection scheme, Mon. Weather Rev., 121, 297-304 (1993)
[18] Lin, S.; Rood, R., Multidimensional flux-form semi-Lagrangian transport schemes, Mon. Weather Rev., 124, 2046-2070 (1996)
[19] Leonard, B.; Lock, A.; MacVean, M., Conservative explicit unrestricted-time-step multidimensional constancy-preserving advection schemes, Mon. Weather Rev., 124, 2588-2606 (1996)
[20] Smolarkiewicz, P., A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes – comment, Mon. Weather Rev., 117, 2626-2632 (1989)
[21] Durran, D., Numerical Methods for Wave Equations in Geophysical Fluid Dynamics (1999), Springer-Verlag: Springer-Verlag New York
[22] Harten, A., Adaptive multiresolution schemes for shock computatoins, J. Comput. Phys., 115, 319-338 (1994) · Zbl 0925.65151
[23] Costa, B.; Don, W. S., High order hybrid central-WENO finite difference scheme for conservation laws, J. Comput. Appl. Math., 204, 2, 209-218 (2007) · Zbl 1115.65091
[24] Adams, N. A.; Shariff, K., A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, J. Comput. Phys., 127, 27-51 (1996) · Zbl 0859.76041
[25] Pirozzoli, S., Conservative hybrid compact-WENO schemes for shock-turbulence interaction, J. Comput. Phys., 178, 81-117 (2002) · Zbl 1045.76029
[26] Hill, D.; Pullin, D., Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks, J. Comput. Phys., 194, 435-450 (2004) · Zbl 1100.76030
[27] LeVeque, R. J., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal., 33, 627-665 (1996) · Zbl 0852.76057
[28] Gottleib, S.; Shu, C.-W., Total variation diminishing Runge-Kutta schemes, Math. Comp., 67, 73-85 (1998) · Zbl 0897.65058
[29] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems (2002), Cambridge University Press · Zbl 1010.65040
[30] Zerroukat, M.; Wood, N.; Staniforth, A., Application of the parabolic spline method (PSM) to a multi-dimensional conservative semi-Lagrangian transport scheme (SLICE), J. Comput. Phys., 225, 935-948 (2007) · Zbl 1343.76054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.