×

Attractors for nonautonomous Navier-Stokes system and other partial differential equations. (English) Zbl 1141.76018

Bardos, Claude (ed.) et al., Instability in models connected with fluid flows I. New York, NY: Springer (ISBN 978-0-387-75216-7/hbk). International Mathematical Series (New York) 6, 135-265 (2008).
Summary: We present general methods for constructing and studying global attractors of nonautonomous evolution partial differential equations. The nonautonomous 2D Navier-Stokes system with time-dependent external force serves as the main example. The Kolmogorov \(\varepsilon\)-entropy and fractal dimension of global attractors are considered for this system and for other important equations of mathematical physics. We also establish the convergence of global attractors of nonautonomous equations with singularly oscillating terms to attractors of the corresponding “limit” equations.
For the entire collection see [Zbl 1130.76003].

MSC:

76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35Q30 Navier-Stokes equations
Full Text: DOI

References:

[1] Amerio, L.; Prouse, G., Abstract Almost Periodic Functions and Functional Equations (1971), New York: Van Nostrand, New York · Zbl 0215.15701
[2] Arrieta, J.; Carvalho, A. N.; Hale, J. K., A damped hyperbolic equation with critical exponent, Commun. Partial Differ. Equations, 17, 841-866 (1992) · Zbl 0815.35067 · doi:10.1080/03605309208820866
[3] Babin, A. V., Attractors of Navier-Stokes equations In: Handbook of Mathematical Fluid Dynamics. Vol. II, 169-222 (2003), Amsterdam: North-Holland, Amsterdam · Zbl 1054.76016 · doi:10.1016/S1874-5792(03)80008-3
[4] Babin, A. V.; Vishik, M. I., Attractors of evolutionary partial differential equations and estimates of their dimensions, Russian Math. Surv., 38, 4, 151-213 (1983) · Zbl 0541.35038 · doi:10.1070/RM1983v038n04ABEH004209
[5] Babin, A. V.; Vishik, M. I., Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., 62, 4, 441-491 (1983) · Zbl 0565.47045
[6] Babin, A. V.; Vishik, M. I., Maximal attractors of semigroups corresponding to evolution differential equations, Math. USSR Sbornik, 54, 2, 387-408 (1986) · Zbl 0611.35033 · doi:10.1070/SM1986v054n02ABEH002976
[7] Babin, A. V.; Vishik, M. I., Unstable invariant sets of semigroups of non-linear operators and their perturbations, Russian Math. Surv., 41, 1-41 (1986) · Zbl 0624.47065 · doi:10.1070/RM1986v041n04ABEH003375
[8] Babin, A. V.; Vishik, M. I., Uniform finite-parameter asymptotics of solutions of nonlinear evolutionary equations, J. Math. Pures Appl., 68, 399-455 (1989) · Zbl 0717.35009
[9] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North Holland, 1992. · Zbl 0778.58002
[10] Bartucelli, M. V.; Constantin, P.; Doering, C. R.; Gibbon, J. D.; Gisselfält, M., On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation, Physica D, 44, 412-444 (1990) · Zbl 0702.76061
[11] Billotti, J. E.; LaSalle, J. P., Dissipative periodic processes, Bull. Amer. Math. Soc., 77, 1082-1088 (1971) · Zbl 0274.34061
[12] Blinchevskaya, M. A.; Yu. Ilyashenko, S., Estimate for the entropy dimension of the maximal attractor for k-contracting systems in an infinite-dimensional space, Russian J. Math. Phys., 6, 1, 20-26 (1999) · Zbl 1059.37507
[13] S. M. Borodich, On the behavior as t → +∞ of solutions of some nonautonomous equations, Moscow Univ. Math. Bull. 45 (1990), no. 6, 19-21. · Zbl 0724.34070
[14] D. N. Cheban and D. S. Fakeeh, Global Attractors of the Dynamical Systems without Uniqueness [in Russian], Sigma, Kishinev, 1994.
[15] Chepyzhov, V. V.; Ilyin, A. A., A note on the fractal dimension of attractors of dissipative dynamical systems, Nonlinear Anal., Theory Methods Appl., 44, 6, 811-819 (2001) · Zbl 1153.37438 · doi:10.1016/S0362-546X(99)00309-0
[16] Chepyzhov, V. V.; Ilyin, A. A., On the fractal dimension of invariant sets; applications to Navier-Stokes equations, Discr. Cont. Dyn. Syst., 10, 1-2 (2004) · Zbl 1049.37047
[17] Chepyzhov, V. V.; Yu Goritsky, A.; Vishik, M. I., Integral manifolds and attractors with exponential rate for nonautonomous hyperbolic equations with dissipation, Russian J. Math. Phys., 12, 1, 17-39 (2005) · Zbl 1200.35186
[18] V. V. Chepyzhov and M. I. Vishik, Nonautonomous dynamical systems and their attractors, Appendix in: M. I. Vishik, Asymptotic Behavior of Solutions of Evolutionary Equations, Cambridge Univ. Press, Cambridge, 1992. · Zbl 0797.35016
[19] Chepyzhov, V. V.; Vishik, M. I., Nonautonomous evolution equations with almost periodic symbols, Rend. Semin. Mat. Fis. Milano, LXXII, 185-213 (1992) · Zbl 0827.35013
[20] Chepyzhov, V. V.; Vishik, M. I., Attractors for nonautonomous evolution equations with almost periodic symbols, C. R. Acad. Sci. Paris Sér. I, 316, 357-361 (1993) · Zbl 0770.35028
[21] Chepyzhov, V. V.; Vishik, M. I., Families of semiprocesses and their attractors, C. R. Acad. Sci. Paris Sér. I, 316, 441-445 (1993) · Zbl 0896.58054
[22] Chepyzhov, V. V.; Vishik, M. I., Dimension estimates for attractors and kernel sections of nonautonomous evolution equations, C. R. Acad. Sci. Paris Sér. I, 317, 367-370 (1993) · Zbl 0796.35065
[23] Chepyzhov, V. V.; Vishik, M. I., Nonautonomous evolution equations and their attractors, Russian J. Math. Phys., 1, 2, 165-190 (1993) · Zbl 0913.35055
[24] Chepyzhov, V. V.; Vishik, M. I., A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations, Indiana Univ. Math. J., 42, 3, 1057-1076 (1993) · Zbl 0819.35073 · doi:10.1512/iumj.1993.42.42049
[25] Chepyzhov, V. V.; Vishik, M. I., Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl., 73, 3, 279-333 (1994) · Zbl 0838.58021
[26] Chepyzhov, V. V.; Vishik, M. I., Periodic processes and nonautonomous evolution equations with time-periodic terms, Topol. Meth. Nonl. Anal. J. Juliusz Schauder Center, 4, 1, 1-17 (1994) · Zbl 0820.47073
[27] V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous evolution equations with translation-compact symbols, In: Operator Theory: Advances and Applications 78, Bikhäuser, 1995, pp. 49-60. · Zbl 0836.35062
[28] Chepyzhov, V. V.; Vishik, M. I., Nonautonomous evolutionary equations with translation compact symbols and their attractors, C. R. Acad. Sci. Paris Sér. I, 321, 153-158 (1995) · Zbl 0837.35059
[29] V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous evolutionary equations of mathematical physics with translation compact symbols, Russian Math. Surv. 50 (1995), no. 4. · Zbl 0836.35062
[30] Chepyzhov, V. V.; Vishik, M. I., Trajectory attractors for evolution equations, C. R. Acad. Sci. Paris Sér. I, 321, 1309-1314 (1995) · Zbl 0843.35038
[31] Chepyzhov, V. V.; Vishik, M. I., Trajectory attractors for reaction-diffusion systems, Topol. Meth. Nonl. Anal. J. Juliusz Schauder Center, 7, 1, 49-76 (1996) · Zbl 0894.35010
[32] Chepyzhov, V. V.; Vishik, M. I., Trajectory attractors for 2D Navier-Stokes systems and some generalizations, Topol. Meth. Nonl. Anal. J. Juliusz Schauder Center, 8, 217-243 (1996) · Zbl 0894.35011
[33] Chepyzhov, V. V.; Vishik, M. I., Evolution equations and their trajectory attractors, J. Math. Pures Appl., 76, 10, 913-964 (1997) · Zbl 0896.35032
[34] V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Am. Math. Soc., Providence RI, 2002. · Zbl 0986.35001
[35] Chepyzhov, V. V.; Vishik, M. I., Nonautonomous 2D Navier-Stokes system with a simple global attractor and some averaging problems, El. J. ESAIM: COCV, 8, 467-487 (2002) · Zbl 1068.35089 · doi:10.1051/cocv:2002056
[36] Chepyzhov, V. V.; Vishik, M. I.; Wendland, W. L., On Nonautonomous sine-Gordon type equations with a simple global attractor and some averaging, Discr. Cont. Dyn. Syst., 12, 1, 27-38 (2005) · Zbl 1067.35017
[37] Chueshov, I. D., Global attractors of nonlinear problems of mathematical physics, Russian Math. Surv., 48, 3, 133-161 (1993) · Zbl 0805.58042 · doi:10.1070/RM1993v048n03ABEH001033
[38] I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems [in Russian] Acta, Kharkov, 1999. · Zbl 1100.37046
[39] Constantin, P.; Foias, C., Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Commun. Pure Appl. Math., 38, 1-27 (1985) · Zbl 0582.35092 · doi:10.1002/cpa.3160380102
[40] Constantin, P.; Foias, C., Navier-Stokes Equations (1989), Chicago- London: Univ. Chicago Press, Chicago- London
[41] P. Constantin, C. Foias, and R. Temam, Attractors representing turbulent flows, Mem. Am. Math. Soc. 53, 1985. · Zbl 0567.35070
[42] Constantin, P.; Foias, C.; Temam, R., On the dimension of the attractors in two-dimensional turbulence, Physica D, 30, 284-296 (1988) · Zbl 0658.58030 · doi:10.1016/0167-2789(88)90022-X
[43] Conway, J. H.; Sloan, N. J.A., Sphere Packing, Lattices and Groups (1988), New York, etc.: Springer-Verlag, New York, etc. · Zbl 0634.52002
[44] Dafermos, C. M., Semiflows generated by compact and uniform processes, Math. Syst. Theory, 8, 142-149 (1975) · Zbl 0303.54016 · doi:10.1007/BF01762184
[45] C. M. Dafermos, Almost periodic processes and almost periodic solutions of evolutional equations, In: Proc. Univ. Florida, Intern. Symp., New York Acad. Press, 1977, pp. 43-57. · Zbl 0537.34045
[46] Doering, C. R.; Gibbon, J. D.; Holm, D. D.; Nicolaenco, B., Low-dimensional behavior in the complex Ginzburg-Landau equation, Nonlinearity, 1, 279-309 (1988) · Zbl 0655.58021 · doi:10.1088/0951-7715/1/2/001
[47] Doering, C. R.; Gibbon, J. D.; Levermore, C. D., Weak and strong solutions of the complex Ginzburg-Landau equation, Physica D, 71, 285-318 (1994) · Zbl 0810.35119 · doi:10.1016/0167-2789(94)90150-3
[48] A. Douady and J. Oesterlé, Dimension de Hausdorff des attracteurs [in French], C. R. Acad. Sci. Paris Sér. I textbf290, (1980), 1135-1138. · Zbl 0443.58016
[49] Eden, A.; Foias, C.; Temam, R., Local and global Lyapunov exponents, J. Dyn. Differ. Equations, 3, 1, 133-177 (1991) · Zbl 0718.34080 · doi:10.1007/BF01049491
[50] Eden, A.; Foias, C.; Nicolaenco, B.; Temam, R., Exponential Attractors for Dissipative Evolution Equations (1995), New York: John Wiley and Sons, New York
[51] M. Efendiev, A. Miranville, and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in ℝ^3, C. R. Acad. Sci. Paris Sér. I 330 (2000), 713-718. · Zbl 1151.35315
[52] Efendiev, M.; Zelik, S.; Miranville, A., Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. R. Soc. Edinb., Sect. A, Math., 135, 4, 703-730 (2005) · Zbl 1088.37005 · doi:10.1017/S030821050000408X
[53] Efendiev, M.; Zelik, S., Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 19, 6, 961-989 (2002) · Zbl 1036.35038 · doi:10.1016/S0294-1449(02)00115-4
[54] Fabrie, P.; Miranville, A., Exponential attractors for nonautonomous first-order evolution equations, Discr. Cont. Dyn. Syst., 4, 2, 225-240 (1998) · Zbl 0980.34051
[55] Feireisl, E., Attractors for wave equations with nonlinear dissipation and critical exponent, C. R. Acad. Sci. Paris Sér. I, 315, 551-555 (1992) · Zbl 0792.35123
[56] Feireisl, E., Exponentially attracting finite-dimensional sets for the processes generated by nonautonomous semilinear wave equations, Funk. Ekv., 36, 1-10 (1993) · Zbl 0823.35119
[57] Feireisl, E., Finite-dimensional behavior of a nonautonomous partial differential equation: Forced oscillations of an extensible beam, J. Differ. Equations, 101, 302-312 (1993) · Zbl 0773.35077 · doi:10.1006/jdeq.1993.1014
[58] Foias, C.; Temam, R., Some analytic and geometric properties of the solutions of the Navier-Stokes equations, J. Math. Pures Appl., 58, 3, 339-368 (1979) · Zbl 0454.35073
[59] Foias, C.; Temam, R.; Bishop, A. R.; Campbell, D. K.; Nicolaenco, B., Finite parameter approximative structure of actual flows, Nonlinear Problems: Problems and Future (1982), Amsterdam: North-Holland, Amsterdam
[60] Foias, C.; Temam, R.; Barenblatt, G. I.; Iooss, G.; Joseph, D. D., Asymptotic numerical analysis for the Navier-Stokes equations, InL Nonlinear Dynamics and Turbulence, 139-155 (1983), London: Pitman, London · Zbl 0555.76030
[61] Foias, C.; Manley, O.; Rosa, R.; Temam, R., Navier-Stokes Equations and Turbulence (2001), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0994.35002
[62] F. Gazzola and M. Sardella, Attractors for families of processes in weak topologies of Banach spaces, Discr. Cont. Dyn. Syst. 4 (1998), no. 3, 455-466. · Zbl 0958.47032
[63] J. M. Ghidaglia and B. Héron, Dimension of the attractors associated to the Ginzburg-Landau partial differential equation, Physica 28D (1987), 282-304. · Zbl 0623.58049
[64] Ghidaglia, J. M.; Temam, R., Attractors for damped nonlinear hyperbolic equations, J. Math. Pures Appl., 66, 273-319 (1987) · Zbl 0572.35071
[65] A. Yu. Goritsky and M. I. Vishik, Integral manifolds for nonautonomous equations, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 115^ˆ21 (1997), 109-146.
[66] M. Grasselli and V. Pata, On the damped semilinear wave equation with critical exponent, Discr. Cont. Dyn. Syst. (2003), 351-358. · Zbl 1058.35044
[67] Hale, J. K., Asymptotic behavior and dynamics in infinite dimensions, Research Notes Math., 132, 1-42 (1985) · Zbl 0653.35006
[68] J. K. Hale, Asymptotic behavior of dissipative systems, · Zbl 0642.58013
[69] Hale, J. K.; Kato, J., Phase space of retarded equations with infinite delay, Tohôku Math. J., 21, 11-41 (1978) · Zbl 0383.34055
[70] Hale, J. K.; Verduyn-Lunel, S. M., Averaging in infinite dimensions, J. Int. Eq. Appl., 2, 4, 463-494 (1990) · Zbl 0755.45012 · doi:10.1216/jiea/1181075583
[71] A. Haraux, Two remarks on dissipative hyperbolic problems, In: Nonlinear Partial Differential Equations and Their Applications (H. Brezis and J. L. Lions, Eds.) Pitman, 1985, pp.161-179. · Zbl 0579.35057
[72] Haraux, A., Attractors of asymptotically compact processes and applications to nonlinear partial differential equations, Commun. Partial Differ. Equations, 13, 1383-1414 (1988) · Zbl 0676.35008 · doi:10.1080/03605308808820580
[73] A. Haraux, Systèmes Dynamiques Dissipatifs et Applications [in French], Masson, Paris etc., 1991. · Zbl 0726.58001
[74] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math. 840, Springer-Verlag, 1981. · Zbl 0456.35001
[75] Hunt, B., Maximal local Lyapunov dimension bounds the box dimension of chaotic attractors, Nonlinearity, 9, 845-852 (1996) · Zbl 0895.58039 · doi:10.1088/0951-7715/9/4/001
[76] Ilyashenko, Yu. S., Weakly contracting systems and attractors of Galerkin approximation for the Navier-Stokes equations on a two-dimensional torus, Sel. Math. Sov., 11, 203-239 (1992) · Zbl 0789.35132
[77] Ilyin, A. A., Lieb-Thirring inequalities on the N-sphere and in the plane and some applications, Proc. London Math. Soc. (3), 67, 159-182 (1993) · Zbl 0789.58079 · doi:10.1112/plms/s3-67.1.159
[78] Ilyin, A. A., Attractors for Navier-Stokes equations in domain with finite measure, Nonlinear Anal., Theory Methods Appl., 27, 5, 605-616 (1996) · Zbl 0859.35090 · doi:10.1016/0362-546X(95)00112-9
[79] Ilyin, A. A., Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides, Sb. Math., 187, 5, 635-677 (1996) · Zbl 0877.35093 · doi:10.1070/SM1996v187n05ABEH000126
[80] A. A. Ilyin, Global averaging of dissipative dynamical systems, Rend. Acad. Naz. Sci. XL, Mem. Mat. Appl. 116^ˆ22 (1998), 167-191.
[81] Kapitanskii, L. V., Minimal compact global attractor for a damped semilinear wave equations, Commun. Partial Differ. Equations, 20, 7-8, 1303-1323 (1995) · Zbl 0829.35014 · doi:10.1080/03605309508821133
[82] J. L. Kaplan and J. A. Yorke, Chaotic behavior of multi-dimensional difference equations, In: Functional Differential Equations and Approximations of Fixed Points (H. O. Peitgen and H. O. Walter Eds.), Lect. Notes Math. 730 (1979), p. 219. · Zbl 0448.58020
[83] Kolmogorov, A.; Tikhomirov, V., ε -entropy and ε -capacity of sets in functional spaces, [in Russian], Uspekhi Mat. Nauk, 14, 3-86 (1959) · Zbl 0090.33503
[84] Kopell, N.; Howard, L. N., Plane wave solutions to reaction-diffusion equations, Stud. Appl. Math., 52, 5, 291-328-3-86 (1973) · Zbl 0305.35081
[85] I. P. Kornfeld, Ya.G. Sinai, and S. V. Fomin, · Zbl 0508.28008
[86] Kuramoto, Y.; Tsuzuki, T., On the formation of dissipative structures in reaction-diffusion systems, Reduction Perturbation Approach, Progr. Theor. Phys., 54, 687-699 (1975)
[87] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow (1969), New York: Gordon and Breach, New York · Zbl 0184.52603
[88] Ladyzhenskaya, O. A., On the dynamical system generated by the Navier-Stokes equations, J. Soviet Math., 34, 458-479 (1975) · Zbl 0336.35081 · doi:10.1007/BF01084684
[89] Ladyzhenskaya, O. A., On finite dimension of bounded invariant sets for the Navier-Stokes system and other dynamical systems, J. Soviet Math., 28, 5, 714-725 (1982) · Zbl 0561.76044 · doi:10.1007/BF02112336
[90] Ladyzhenskaya, O. A., On finding the minimal global attractors for the Navier-Stokes equations and other PDEs, Russian Math. Surv., 42, 6, 27-73 (1987) · Zbl 0687.35072 · doi:10.1070/RM1987v042n06ABEH001503
[91] Ladyzhenskaya, O. A., Attractors for Semigroups and Evolution Equations (1991), Cambridge-New York: Cambridge Univ. Press, Cambridge-New York · Zbl 0755.47049
[92] Levitan, B.; Zhikov, V., Almost Periodic Functions and Differential Equations (1982), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0499.43005
[93] Li, P.; Yau, S.-T., On the Schrödinger equation and the eigenvalue problem, Commun. Math. Phys., 8, 309-318 (1983) · Zbl 0554.35029
[94] E. Lieb and W. Thirring, Inequalities for the moments of the eigenvalues of Schrödinger equations and their relations to Sobolev inequalities, In: Studies in Mathematical Physics, essays in honour of Valentine Bargmann, Princeton Univ. Press, 1976, pp. 269-303. · Zbl 0342.35044
[95] J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications. Vol. 1, Dunod, Paris, 1968. · Zbl 0165.10801
[96] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969. · Zbl 0189.40603
[97] Liu, V. X., A sharp lower bound for the Hausdorff dimension of the global attractor of the 2D Navier-Stokes equations, Commun. Math. Phys., 158, 327-339 (1993) · Zbl 0790.35085 · doi:10.1007/BF02108078
[98] Lu, S., Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces, J. Differ. Equations, 230, 196-212 (2006) · Zbl 1112.35029 · doi:10.1016/j.jde.2006.07.009
[99] Lu, S.; Wu, H.; Zhong, C., Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Discr. Cont. Dyn. Syst., 13, 3, 701-719 (2005) · Zbl 1083.35094 · doi:10.3934/dcds.2005.13.701
[100] Métivier, G., Valeurs propres d’opérateurs définis sur la restriction de systèmes variationnels à des sous-espaces, J. Math. Pures Appl., 57, 133-156 (1978) · Zbl 0328.35029
[101] Mielke, A., The Ginzburg-Landau equation and its role as a modulation equation, Handbook of Dynamical Systems, Vol.2, 759-834 (2002), Amsterdam: North-Holland, Amsterdam · Zbl 1041.37037
[102] Mielke, A., Bounds for the solutions of the complex Ginzburg-Landau equation in terms of the dispersion parameters, Physica D, 117, 1-4, 106-116 (1998) · Zbl 0939.35033 · doi:10.1016/S0167-2789(97)00308-4
[103] Mielke, A., The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors, Nonlinearity, 10, 199-222 (1997) · Zbl 0905.35043 · doi:10.1088/0951-7715/10/1/014
[104] Miller, R. K., Almost periodic differential equations as dynamical systems with applications to the existence of almost periodic solutions, J. Differ. Equations, 1, 337-395 (1965) · Zbl 0144.11301 · doi:10.1016/0022-0396(65)90012-4
[105] R. K. Miller and G. R. Sell, Topological dynamics and its relation to integral and nonautonomous systems. In: International Symposium. Vol. I, 1976, Academic Press, New York, 223-249. · Zbl 0355.34041
[106] Miranville, A., Exponential attractors for a class of evolution equations by a decomposition method, C. R. Acad. Sci. Paris Sér. I, 328, 145-150 (1999) · Zbl 1101.35334
[107] Miranville, A.; Wang, X., Attractors for nonautonomous nonhomogeneous Navier-Stokes equations, Nonlinearity, 10, 1047-1061 (1997) · Zbl 0908.35098 · doi:10.1088/0951-7715/10/5/003
[108] X. Mora and J. Sola Morales, Existence and nonexistence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations, In: Dynamics of Infinite-Dimensional Systems (ed. N. S. Chow and J. K. Hale), Springer-Verlag, 1987, 187-210. · Zbl 0642.35062
[109] Sh. M. Nasibov, On optimal constants in some Sobolev inequalities and their applications to a nonlinear Schrödinger equation, Soviet Math. Dokl. 40 (1990), 110-115. · Zbl 0707.46027
[110] Pata, V.; Prouse, G.; Vishik, M. I., Travelling waves of dissipative nonautonomous hyperbolic equations in a strip, Adv. Differ. Equ., 3, 249-270 (1998) · Zbl 0954.35033
[111] Pata, V.; Zelik, S., A remark on the weakly damped wave equation, Commun. Pure Appl. Math., 5, 609-614 (2006)
[112] Robinson, J. C., Infinite-Dimensional Dynamical Systems (2001), Cambridge-New York: Cambridge Univ. Press, Cambridge-New York · Zbl 1026.37500
[113] Sell, G. R., Nonautonomous differential equations and topological dynamics I, II, Trans. Am. Math. Soc., 127, 241-262-263-283 (1967) · Zbl 0189.39602
[114] G. R. Sell, Lectures on Topological Dynamics and Differential Equations, Princeton, New York, 1971. · Zbl 0212.29202
[115] Sell, G.; You, Y., Dynamics of Evolutionary Equations (2002), New York: Springer-Verlag, New York · Zbl 1254.37002
[116] Smiley, M. W., Regularity and asymptotic behavior of solutions of nonautonomous differential equations, J. Dyn. Differ. Equations, 7, 2, 237-262 (1995) · Zbl 0834.35021 · doi:10.1007/BF02219357
[117] R. Temam, On the Theory and Numerical Analysis of the Navier-Stokes Equations, North-Holland, 1979. · Zbl 0426.35003
[118] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Philadelphia, 1995. · Zbl 0833.35110
[119] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics (1997), New York: Springer-Verlag, New York · Zbl 0871.35001
[120] Thieullen, P., Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems, J. Dyn. Differ. Equations, 4, 1, 127-159 (1992) · Zbl 0744.34047 · doi:10.1007/BF01048158
[121] Triebel, H., Interpolation Theory, Functional Spaces, Differential Operators (1978), Amsterdam-New York: North-Holland, Amsterdam-New York · Zbl 0387.46032
[122] Vishik, M. I., Asymptotic Behavior of Solutions of Evolutionary Equations (1992), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0797.35016
[123] Vishik, M. I.; Chepyzhov, V. V., Attractors of nonautonomous dynamical systems and estimations of their dimension, Math. Notes, 51, 6, 622-624 (1992) · Zbl 0866.35022 · doi:10.1007/BF01263311
[124] Vishik, M. I.; Chepyzhov, V. V., Attractors of periodic processes and estimates of their dimensions, Math. Notes, 57, 2, 127-140 (1995) · Zbl 0841.35016 · doi:10.1007/BF02309145
[125] Vishik, M. I.; Chepyzhov, V. V., Kolmogorov ε -entropy estimates for the uniform attractors of nonautonomous reaction-diffusion systems, Sb. Math., 189, 2, 235-263 (1998) · Zbl 0915.35056 · doi:10.1070/SM1998v189n02ABEH000301
[126] Vishik, M. I.; Chepyzhov, V. V., Averaging of trajectory attractors of evolution equations with rapidly oscillating terms, Sb. Math., 192, 1, 11-47 (2001) · Zbl 1011.35104 · doi:10.1070/SM2001v192n01ABEH000534
[127] Vishik, M. I.; Chepyzhov, V. V., Kolmogorov epsilon-entropy in the problems on global attractors for evolution equations of mathematical physics, Probl. Inf. Transm., 39, 1, 2-20 (2003) · Zbl 1072.37056 · doi:10.1023/A:1023622313456
[128] Vishik, M. I.; Chepyzhov, V. V., Approximation of trajectories lying on a global attractor of a hyperbolic equation with exterior force rapidly oscillating in time, Sb. Math., 194, 9, 1273-1300 (2003) · Zbl 1077.37048 · doi:10.1070/SM2003v194n09ABEH000765
[129] Vishik, M. I.; Chepyzhov, V. V., Nonautonomous Ginzburg-Landau equation and its attractors, Sb. Math., 196, 6, 17-42 (2005) · Zbl 1105.35121 · doi:10.1070/SM2005v196n06ABEH000901
[130] Vishik, M. I.; Chepyzhov, V. V., Attractors of dissipative hyperbolic equation with singularly oscillating external forces, Math. Notes, 79, 3-504 (2006) · Zbl 1124.37046
[131] Vishik, M. I.; Fiedler, B., Quantitative homogenization of global attractors for hyperbolic wave equations with rapidly oscillating terms, Russian Math. Surv., 57, 4, 709-728 (2002) · Zbl 1055.35025 · doi:10.1070/RM2002v057n04ABEH000534
[132] Vishik, M. I.; Fursikov, A. V., Mathematical Problems of Statistical Hydromechanics (1988), Dortrecht-Boston-London: Kluwer Acad. Publ, Dortrecht-Boston-London · Zbl 0688.35077
[133] Vishik, M. I.; Zelik, S. V., The trajectory attractor of a nonlinear elliptic system in a cylindrical domain, Sb. Math., 187, 12, 1755-1789 (1996) · Zbl 0871.35016 · doi:10.1070/SM1996v187n12ABEH000177
[134] Weinstein, M., Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87, 567-576 (1983) · Zbl 0527.35023 · doi:10.1007/BF01208265
[135] Ziane, M., Optimal bounds on the dimension of the attractor of the Navier-Stokes equations, Physica D, 105, 1-19 (1997) · Zbl 0938.35127 · doi:10.1016/S0167-2789(96)00246-1
[136] Zelik, S. V., The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and it’s dimension, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 24, 1-25 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.