×

Analysis of power law and log law velocity profiles in the overlap region of a turbulent wall jet. (English) Zbl 1139.76312

Summary: The two-dimensional turbulent wall jet on a flat surface without free stream is analysed at a large Reynolds number, using the method of matched asymptotic expansions. The open mean equations of the turbulent boundary layer are analysed in the wall and wake layers by the method of matched asymptotic expansions and the results are matched by the Izakson-Millikan-Kolmogorov hypothesis. In the overlap region, the outer wake layer is governed by the velocity defect law (based on \(U_{\text m}\), the maximum velocity) and the inner layer by the law of the wall. It is shown that the overlap region possesses a non-unique solution, where the power law region simultaneously exists along with the log law region. Analysis of the power law and log law solutions in the overlap region leads to self-consistent relations, where the power law index, \(a\), is of the order of the non-dimensional friction velocity and the power law multiplication constant, \(C\), is of the order of the inverse of the non-dimensional friction velocity. The lowest order wake layer equation has been closed with generalized gradient transport model and a closed form solution is obtained. A comparison of the theory with experimental data is presented.

MSC:

76D25 Wakes and jets
76F40 Turbulent boundary layers
Full Text: DOI

References:

[1] Abrahamsson, H., Johansson, B. & Lofdahl, L. 1994 A turbulent plane two dimensional wall-jet in a quiescent surrounding. <i>Eur. J. Mech. B/Fluids</i>&nbsp;<b>13</b>, 533–556.
[2] Afzal, N. 1980 Second order effects in the wall jet. <i>J. Mecanique</i>&nbsp;<b>19</b>, 387–402. · Zbl 0492.76051
[3] Afzal, N. 1996 Wake layer in a turbulent boundary layer: a new approach. <i>Proceedings of IUTAM Symposium on Asymptotic Methods for Turbulent Shear Flows at High Reynolds Numbers</i> (ed. Gersten, K.), pp. 96–115, Dordrecht: Kluwer Academic Publisher
[4] Afzal, N. 1996 Turbulent boundary layer on a moving continuous plate. <i>Fluid Dyn. Res.</i>&nbsp;<b>17</b>, 181–194. · Zbl 1051.76582
[5] Afzal, N. 1997 Power law in wall and wake layers of a turbulent boundary layer. <i>Proceedings of Seventh Asian Congress of Fluid Mechanics</i>. pp. 805–808, New Delhi: Allied Publishers
[6] Afzal, N. 2001 Power law and log law velocity profiles in turbulent boundary layer flow: equivalent relations at large Reynolds numbers. <i>Acta Mechanica</i>&nbsp;<b>151</b>, 171–183. · Zbl 1009.76029
[7] Afzal, N. 2004 Outer nonlinear wake layer in turbulent boundary layers & Izakson–Millikan overlap domain: power law and log law solutions. In <i>Second International Workshop on Wall-Bounded Turbulent Flows</i>, <i>2–5 November 2004</i>, <i>Abdus Salam Internatioal Center for Theoretical Physics, Trieste</i> (org. H. M. Nagib & A. J. Smits), Invited Lecture.
[8] Afzal, N. 2005 Scaling of power law velocity profile in wall-bounded turbulent shear flows. In <i>Proc. 43rd AIAA Aerospace Sciences Meeting and Exhibit, 10–13 January 2005, Reno, Nevada</i>, Paper no. AIAA-2005-0109. Reston, VA: American Institute of Aeronautics and Astronautics.
[9] Barenblatt, G.I. 1993 Scaling laws for fully developed turbulent shear flows. Part I. Basic hypothesis and analysis. <i>J. Fluid Mech.</i>&nbsp;<b>248</b>, 513–520. · Zbl 0772.76026
[10] Barenblatt, G.I., Chorin, A.J. & Prostokishin, V.M. 1997 Scaling laws for fully developed turbulent flow in pipes. <i>Appl. Mech. Rev.</i>&nbsp;<b>90</b>, 413–429. · Zbl 0872.76047
[11] Barenblatt, G.I., Chorin, A.J. & Prostokishin, V.M. 2000 A note on the overlap region in turbulent boundary layers. <i>Phys. Fluids</i>&nbsp;<b>12</b>, 2159–2161. · Zbl 1184.76045
[12] Bradshaw, P. & Gee, M.Y. 1960 The wall jet with or without free stream. <i>Aero. Res. Counc. Rep. Mem.</i>, 3252.
[13] Buschmann, M.H. & Gad-el-Hak, K. 2003 The debate concerning the mean velocity profile of a turbulent boundary layer. <i>AIAA J.</i>&nbsp;<b>41</b>, 565–572.
[14] Clauser, F.H. 1956 <i>The turbulent boundary layers. Advances in Applied Mechanics</i>, vol. 4. pp. 1–51, New York: Academic Press
[15] Coles, D. 1968 The young person’s guide to the data. <i>Proceedings of Computations of Turbulent Boundary Layer–1968 AFOSR-IPF-Stanford Conference</i>, vol. II. Stanford, CA: Stanford University.
[16] Eaton, J.K. & Nagib, H.M. 2004 <i>Second International Workshop on Wall-Bounded Turbulent Flows, 2–5 November 2004, Abdus Salam International Center for Theoretical Physics, Trieste</i><i>Summary report</i>. (org. H. M. Nagib & A. J. Smits).
[17] Eriksson, J., Karlsson, R. & Pearson, J. 1998 An experimental study of two dimensional plane turbulent wall jet. <i>Exp. Fluids</i>&nbsp;<b>25</b>, 50–60.
[18] George, W. & Castillo, L. 1997 Zero pressure gradient turbulent boundary layer. <i>Appl. Mech. Rev.</i>&nbsp;<b>50</b>, 689–729, (see also Technical Report No. TRL-153 p. 20, Nov. 1996).
[19] George, W., Abrahamsson, H., Eriksson, J., Karlsson, R.L., Lofdahl, L. & Wosnik, M. 2000 A similarity theory for the turbulent plane wall jet without external stream. <i>J. Fluid Mech.</i>&nbsp;<b>425</b>, 367–411. · Zbl 1007.76028
[20] Gersten, K. & Herwig, H. 1992 Stromungs mechanik. Wiesbaden: Verlag Vieweg.
[21] Glauert, M.B. 1956 The wall jet. <i>J. Fluid Mech.</i>&nbsp;<b>1</b>, 625.
[22] Hammond, G.P. 1982 Complete velocity profile and optimum skin friction formula for wall jet. <i>J. Fluid Eng.</i>&nbsp;<b>104</b>, 59.
[23] Izakson, A.A. 1937 On formula for the velocity distribution near walls. <i>Tech. Phys. USSR</i>&nbsp;<b>4</b>, 155–1590.
[24] Kailasnath, P. 1993 Reynolds number effect and the momentum flux in turbulent boundary layer. Ph.D. thesis, Mason Laboratory, Yale University.
[25] Karlsson, R., Eriksson, J. & Pearson, J. 1993 An experimental study of a two dimensional plane turbulent wall jet. <i>Tech Rep VU-S93-836. Vattenfall Utvekling AB</i>. Sweden: Alvkarleby Laboratory.
[26] Launder, B.E. & Rodi, W. 1981 The turbulent wall jets. <i>Prog. Aerospace Sci.</i>&nbsp;<b>9</b>, 81.
[27] Launder, B.E. & Rodi, W. 1983 The turbulent wall jet: measurements and modeling. <i>Annu. Rev. Fluid Mech.</i>&nbsp;<b>15</b>, 429.
[28] Lykossov, V.N. 1992 The momentum turbulent counter-gradient and transfer. <i>Adv. Atmos. Sci.</i>&nbsp;<b>9</b>, 191–200.
[29] Millikan, C.B. 1938 A Critical discussion of turbulent flow in channels and circular tubes. <i>Proc. 5th Int. Cong. Appl. Mech.</i>, 386–392.
[30] Narasimha, R., Narayan, K.Y. & Parthasarathy, S.P. 1973 Parametric analysis of turbulent wall jet in still air. <i>Aeronaut. J.</i>&nbsp;<b>77</b>, 335.
[31] Nunner, W. 1956 Warmeubergang und Druckabfall in rauhen Rohren. <i>Forschungsheft Nr 455</i>. Düsseldorf: Verein Deutscher Ingenieure e.V.
[32] Osterlund, J.M., Johansson, A.A. & Hites, M.H. 2000 Comment on A note on the overlap region in turbulent boundary layer [<i>Phys. Fluids</i> 12, 2159 (2000)]. <i>Phys. Fluids</i>&nbsp;<b>12</b>, 2360–2363.
[33] Osterlund, J.M., Johansson, A.A., Nagib, H.M. & Hites, M.H. 2000 Comment on A note on the overlap region in turbulent boundary layer. <i>Phys. Fluids</i>&nbsp;<b>12</b>, 2159–2162.
[34] Sreenivasan, K.R., Tavoularis, S. & Corrsin, S. 1982 A test of gradient transport and it generalization. <i>Turbulent shear flow 3</i>. Berlin: Springer.
[35] Tailland, A. & Mathieu, J. 1967 Jet parietal. <i>J. Mecanique</i>&nbsp;<b>6</b>, 103–131.
[36] Tangemann, R. & Gretler, W. 1998 The assessment of different turbulence models for a wall jet. <i>ZAMM</i>, 78. · Zbl 0925.76255
[37] Townsend, A.A. 1956 The structure of turbulent shear flow. Cambridge: Cambridge University Press. · Zbl 0070.43002
[38] Wygnanski, I., Katz, Y. & Horev, E. 1992 On the applicability of various scaling laws to the turbulent wall jet. <i>J. Fluid Mech.</i>&nbsp;<b>234</b>, 669–690.
[39] Zagarola, M.V. & Smits, A.J. 1998 Mean flow scaling in turbulent pipe flow. <i>J. Fluid Mech.</i>&nbsp;<b>373</b>, 33–79. · Zbl 0941.76510
[40] Zanoun, E.S., Nagib, H., Drust, F. & Monkewitz, P. 2002 Higher Reynolds number channel data and their comparison to recent asymptotic theory. <i>Proc. 40th AIAA Aerospace Sciences Meeting and Exhibit, 14–17 January 2002, Reno, Nevada, Paper no. AIAA-2002-1102</i>. Reston, VA: American Institute of Aeronautics and Astronautics.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.