×

Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. (English) Zbl 1138.60324

Summary: Stochastic dynamics of fractional order are usually modeled as non-random differential equation driven by fractional Brownian motion. Here we propose rather to use a non-random fractional dynamics driven by a (standard) Brownian motion. The key is the Taylor’s series of fractional order \(f(x+h) = E _\alpha(h^ \alpha D_x ^\alpha )f(x)\) where \(E_\alpha (\cdot )\) denotes the Mittag-Leffler function, and \(D_x ^\alpha\) is the so-called modified Riemann-Liouville fractional derivative which we introduced recently to remove the effects of the non-zero initial value of the function under consideration. The equivalence of the two models is clarified, and one shows how to switch from one of them to the other one. Two illustrative examples are displayed, which are the stochastic differential equations defining fractional coloured noises on the other hand, and fractional exponential growth on the other hand.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60G15 Gaussian processes
34F05 Ordinary differential equations and systems with randomness
Full Text: DOI

References:

[1] Mandelbrot, b. B., The Fractal Geometry of Nature (1982), W.H. Freeman: W.H. Freeman New York · Zbl 0504.28001
[2] Mandelbrot, B. B.; van Ness, J. W., Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10, 422-437 (1968) · Zbl 0179.47801
[3] Kober, H., On fractional integrals and derivatives, Quart. J. Math. Oxford, 11, 193-215 (1940) · Zbl 0025.18502
[4] Letnivov, A. V., Theory of differentiation of fractional order, Math. Sb., 3, 1-7 (1868)
[5] Liouville, J., Sur le calcul des differentielles à indices quelconques(in french), J. Ecole Polytech., 13, 71 (1832)
[6] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1933), Wiley: Wiley New York
[7] Nishimoto, K., Fractional Calculus (1989), Descartes Press Co.: Descartes Press Co. Koroyama · Zbl 0798.26005
[8] Oldham, K. B.; Spanier, J., The Fractional Calculus, Theory and Application of Differentiation and Integration to Arbitrary Order (1974), Academic Press: Academic Press New York · Zbl 0292.26011
[9] Oustaloup, A., La derivation non entiere: theorie, synthese et applications (Non-Integer Derivation: Theory, Synthesis and Applications) (in French) (1995), Editions Hermes: Editions Hermes Paris · Zbl 0864.93004
[10] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[11] Ross, B., Fractional Calculus and its Applications. Fractional Calculus and its Applications, Lecture Notes in Mathematics, vol. 457 (1974), Springer: Springer Berlin · Zbl 0293.00010
[12] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives, Theory and Applications (1987), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers London · Zbl 0617.26004
[13] Zemanian, A. H., Distribution Theory and Transform Analysis (1987), Dover Publications: Dover Publications New York · Zbl 0643.46028
[14] Campos, L. M.C., On a concept of derivative of complex order with applications to special functions, IMA J. Appl. Math., 33, 109-133 (1984) · Zbl 0565.30034
[15] Campos, L. M.C., Fractional calculus of analytic and branched functions, (Kalia, R. N., Recent Advances in Fractional Calculus (1993), Global Publishing Company) · Zbl 0789.30030
[16] Caputo, M., Linear model of dissipation whose Q is almost frequency dependent II, Geophys. J. R. Ast. Soc., 13, 529-539 (1967)
[17] Djrbashian, M. M.; Nersesian, A. B., Fractional derivative and the Cauchy problem for differential equations of fractional order (in Russian), Izv. Acad. Nauk Armjanskoi SSR, 3, 1, 3-29 (1968) · Zbl 0165.40801
[18] Ortigueira, M. D., Introduction to Fractional Signal Processing. Part I: Continuous Time Systems, IEE Proc. Vision Image Signal Process, I, 62-70 (2000)
[19] Decreusefond, L.; Ustunel, A. S., Stochastic analysis of the fractional Brownian motion, Potent. Anal., 10, 177-214 (1999) · Zbl 0924.60034
[20] Duncan, T. E.H. Y.; Pasik-Duncan, B., Stochastic calculus for fractional Brownian motion, I. Theory, SIAM J. Contr. Optim., 38, 582-612 (2000) · Zbl 0947.60061
[21] Hu, Y.; Øksendal, B., Fractional white noise calculus and applications to finance, Infin. Dimen. Anal. Quantum Probab. Related Top., 6, 6, 1-32 (2003) · Zbl 1045.60072
[22] Al-Akaidi, M., Fractal Speech Processing (2004), Cambridge University press · Zbl 1082.94003
[23] Jumarie, G., Stochastic differential equations with fractional Brownian motion input, Int. J. Syst. Sci., 24, 6, 1113-1132 (1993) · Zbl 0771.60043
[24] Mandelbrot, B. B.; Cioczek-Georges, R., A class of micropulses and antipersistent fractional Brownian motions, Stochastic Processes and their Applications, 60, 1-18 (1995) · Zbl 0846.60055
[25] Jumarie, G., On the representation of fractional Brownian motion as an integral with respect to \((d t)^\alpha \), Appl. Math. Lett., 18, 739-748 (2005) · Zbl 1082.60029
[26] Jumarie, G., On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion, Appl. Math. Lett., 18, 817-826 (2005) · Zbl 1075.60068
[27] Jumarie, G., Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions Further results, Comput. Math. Appl., 51, 1367-1376 (2006) · Zbl 1137.65001
[28] Osler, T. J., Taylor’s series generalized for fractional derivatives and applications, SIAM. J. Math. Anal., 2, 1, 37-47 (1971) · Zbl 0215.12101
[29] Kolwankar, K. M.; Gangal, A. D., Holder exponents of irregular signals and local fractional derivatives, Pramana J. Phys., 48, 49-68 (1997)
[30] Kolwankar, K. M.; Gangal, A. D., Local fractional Fokker-Planck equation, Phys. Rev. Lett., 80, 214-217 (1998) · Zbl 0945.82005
[31] Jumarie, G., New stochastic fractional models for Malthusian growth, the Poissonian birth prodess and optimal management of populations, Math. Comput. Modell., 44, 231-254 (2006) · Zbl 1130.92043
[32] Itô, K., On stochastic differential equations, Mem. Amer. Soc., 4 (1951) · Zbl 0054.05803
[33] Stratonovich, R. L., A new form of representing stochastic integrals and equations, J. SIAM. Contr., 4, 362-371 (1966) · Zbl 0143.19002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.