×

Constant-sign and sign-changing solutions for nonlinear eigenvalue problems. (English) Zbl 1138.35075

Summary: We prove the existence of multiple constant-sign and sign-changing solutions for a nonlinear elliptic eigenvalue problem under Dirichlet boundary condition involving the \(p\)-Laplacian. More precisely, we establish the existence of a positive solution, of a negative solution, and of a nontrivial sign-changing solution when the eigenvalue parameter \(\lambda \) is greater than the second eigenvalue \(\lambda _{2}\) of the negative \(p\)-Laplacian, extending results by Ambrosetti-Lupo, Ambrosetti-Mancini, and Struwe. Our approach relies on a combined use of variational and topological tools (such as, e.g., critical points, mountain-pass theorem, second deformation lemma, variational characterization of the first and second eigenvalue of the \(p\)-Laplacian) and comparison arguments for nonlinear differential inequalities. In particular, the existence of extremal nontrivial constant-sign solutions plays an important role in the proof of sign-changing solutions.

MSC:

35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35J60 Nonlinear elliptic equations
35J20 Variational methods for second-order elliptic equations
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
49J40 Variational inequalities
47J20 Variational and other types of inequalities involving nonlinear operators (general)
Full Text: DOI

References:

[1] Ambrosetti, A.; Lupo, D., On a class of nonlinear Dirichlet problems with multiple solutions, Nonlinear Anal., 8, 1145-1150 (1984) · Zbl 0554.35046
[2] Ambrosetti, A.; Mancini, G., Sharp nonuniqueness results for some nonlinear problems, Nonlinear Anal., 8, 635-645 (1979) · Zbl 0433.35025
[3] Anane, A., Simplicité et isolation de la première valeur propre du \(p\)-Laplacien avec poids, C. R. Acad. Sci. Paris r. I Math., 305, 725-728 (1987) · Zbl 0633.35061
[4] Carl, S.; Heikkilä, S., Nonlinear Differential Equations in Ordered Spaces (2000), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL · Zbl 0948.34001
[5] Carl, S.; Le, V. K.; Motreanu, D., Nonsmooth variational problems and their inequalities, (Comparison Principles and Applications (2007), Springer: Springer New York) · Zbl 1109.35004
[6] S. Carl, D. Motreanu, Constant-sign and sign-changing solutions of a nonlinear eigenvalue problem involving the \(p\); S. Carl, D. Motreanu, Constant-sign and sign-changing solutions of a nonlinear eigenvalue problem involving the \(p\) · Zbl 1212.35109
[7] Carl, S.; Perera, K., Sign-changing and multiple solutions for the \(p\)-Laplacian, Abstr. Appl. Anal., 7, 613-625 (2002) · Zbl 1106.35308
[8] Cuesta, M.; de Figueiredo, D.; Gossez, J.-P., The beginning of the Fučik spectrum for the \(p\)-Laplacian, J. Differential Equations, 159, 212-238 (1999) · Zbl 0947.35068
[9] Gasiński, L.; Papageorgiou, N. S., Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems (2005), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL · Zbl 1058.58005
[10] Jin, Z., Multiple solutions for a class of semilinear elliptic equations, Proc. Amer. Math. Soc., 125, 3659-3667 (1997) · Zbl 0885.35036
[11] D. Motreanu, V.V. Motreanu, N.S. Papageorgiou, Multiple nontrivial solutions for nonlinear eigenvalue problems, Proc. Amer. Math. Soc., (in press); D. Motreanu, V.V. Motreanu, N.S. Papageorgiou, Multiple nontrivial solutions for nonlinear eigenvalue problems, Proc. Amer. Math. Soc., (in press) · Zbl 1189.35215
[12] Rabinowitz, P. H., (Minimax Methods in Critical Point Theory with Applications to Differential Equations. Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65 (1986), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 0609.58002
[13] Struwe, M., A note on a result of Ambrosetti and Mancini, Ann. Mat. Pura Appl., 131, 107-115 (1982) · Zbl 0507.35032
[14] Vázquez, J. L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12, 191-202 (1984) · Zbl 0561.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.