×

On recovering continuum topology from a causal set. (English) Zbl 1137.83329

Summary: An important question that discrete approaches to quantum gravity must address is how continuum features of space-time can be recovered from the discrete substructure. Here, we examine this question within the causal set approach to quantum gravity, where the substructure replacing the space-time continuum is a locally finite partial order. A new topology on causal sets using “thickened antichains” is constructed. This topology is then used to recover the homology of a globally hyperbolic space-time from a causal set which faithfully embeds into it at sufficiently high sprinkling density. This implies a discrete-continuum correspondence which lends support to the fundamental conjecture or “Hauptvermutung” of causal set theory.

MSC:

83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
81S10 Geometry and quantization, symplectic methods
81V17 Gravitational interaction in quantum theory

Software:

Carpet

References:

[1] DOI: 10.1038/nature01882 · doi:10.1038/nature01882
[2] DOI: 10.1038/nature01882 · doi:10.1038/nature01882
[3] DOI: 10.1038/nature01882 · doi:10.1038/nature01882
[4] DOI: 10.1038/nature01882 · doi:10.1038/nature01882
[5] DOI: 10.1038/nature01882 · doi:10.1038/nature01882
[6] DOI: 10.1038/nature01882 · doi:10.1038/nature01882
[7] DOI: 10.1103/PhysRevLett.59.521 · doi:10.1103/PhysRevLett.59.521
[8] R. D. Sorkin, Lecture Notes on Quantum Gravity, edited by A. Gomberoff and D. Marolf (Springer, New York, 2005).
[9] DOI: 10.1016/0375-9601(89)90474-X · doi:10.1016/0375-9601(89)90474-X
[10] D. A. Meyer, Ph. D. thesis, Massachusetts Institute of Technology, 1988.
[11] DOI: 10.1103/PhysRevLett.66.260 · Zbl 0968.83509 · doi:10.1103/PhysRevLett.66.260
[12] DOI: 10.1007/978-3-540-45230-0_4 · doi:10.1007/978-3-540-45230-0_4
[13] DOI: 10.1007/978-1-4615-9763-6 · doi:10.1007/978-1-4615-9763-6
[14] Scott D., Technical Monograph Vol. PR-2, in: Outline of a Mathematical Theory of Computation (1970)
[15] DOI: 10.1007/s00220-006-0066-5 · Zbl 1188.83071 · doi:10.1007/s00220-006-0066-5
[16] DOI: 10.1007/BF00673986 · Zbl 0733.54001 · doi:10.1007/BF00673986
[17] DOI: 10.1088/0264-9381/23/14/011 · Zbl 1096.83028 · doi:10.1088/0264-9381/23/14/011
[18] DOI: 10.1017/CBO9780511524646 · Zbl 0265.53054 · doi:10.1017/CBO9780511524646
[19] DOI: 10.1007/BF01646350 · doi:10.1007/BF01646350
[20] Petersen P., Graduate Texts in Mathematics (1998)
[21] Rotman J. J., An Introduction to Algebraic Topology (1993) · Zbl 0661.55001
[22] DOI: 10.5802/aif.19 · Zbl 0043.17601 · doi:10.5802/aif.19
[23] DOI: 10.5802/aif.19 · Zbl 0043.17601 · doi:10.5802/aif.19
[24] Goodale T., Vector and Parallel Processing–VECPAR 2002, 5th International Conference (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.