×

A three-phase cylindrical shear-lag model for carbon nanotube composites. (English) Zbl 1137.74017

Summary: The viscoelastic behavior of carbon nanotubes (CNTs) reinforced composites is investigated theoretically by using the three-phase concentric cylindrical shell model along with shear-lag arguments. We reveal the parameters which influence the fiber stress, matrix stress and interfacial stress. The aspect ratio of CNTs \(\beta_t\), the cross-sectional area ratio of CNTs \(\beta_A\), the matrix-to-fiber modulus ratio \(\lambda_m\) and the interphase-to-fiber modulus ratio \(\lambda_n\) are common influencing parameters of both the stresses in nanocomposites and the composite modulus. In addition, the effective composite modulus has three other influencing parameters of its own, i.e., the fiber volume fraction \(v_f\), the interphase volume fraction \(v_n\) and the RVE-to-fiber length ratio \(\eta \), whereas the stresses have their own influencing parameters of the RVE-to-fiber diameter ratio \(\beta_R\) and the interphase-to-fiber diameter ratio \(\beta_b\). The modulus of CNTs composites depends strongly upon the modulus and thickness of the interphase. Carbon nanotube fibers improve the viscoelastic stiffness in the whole time period. However, the magnitude of modulus improvement does not vary monotonically with time.

MSC:

74E30 Composite and mixture properties
74M25 Micromechanics of solids
Full Text: DOI

References:

[1] Thostenson E. T., Ren Z. and Chou T.-W. (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61: 1899–1912 · doi:10.1016/S0266-3538(01)00094-X
[2] Qian D., Wagner G. J., Liu W. K., Yu M. F. and Rouff R. S. (2002). Mechanics of carbon nanotubes. Appl. Mech. Rev. 22: 495–533 · doi:10.1115/1.1490129
[3] Thostenson E. T., Li C. and Chou T.-W. (2005). Review: Nanocomposites in context. Compos. Sci. Technol. 65: 491–516 · doi:10.1016/j.compscitech.2004.11.003
[4] Desai A. V. and Haque M. A. (2005). Review: Mechanics of the interface for carbon nanotube–polymer composites. Thin-Walled Struct. 43: 1787–1803 · doi:10.1016/j.tws.2005.07.003
[5] Tjong S. C. (2006). Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Engng. Res. 53: 73–197 · doi:10.1016/j.mser.2006.06.001
[6] Breuer O. and Sundararaj U. (2004). Big returns from small fibers: a review of polymer/carbon nanotube composites. Polymer Compos. 25: 630–645 · doi:10.1002/pc.20058
[7] Xie X. L., Mai Y. W. and Zhou X. P. (2005). Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Engng. Ref. 49: 89–112 · doi:10.1016/j.mser.2005.04.002
[8] Lau K. T. and Hui D. (2002). The revolutionary creation of new advanced materials-carbon nanotube composites. Composites Part B. 33: 263–277 · doi:10.1016/S1359-8368(02)00012-4
[9] Lau K. T., Gu C. and Hui D. (2006). A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Composites Part B. 37: 425–436 · doi:10.1016/j.compositesb.2006.02.020
[10] Jonathan N. C., Umar K., Werner J. B. and Yurii K. G. (2006). Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44: 1624–1652 · doi:10.1016/j.carbon.2006.02.038
[11] Gong X., Liu J., Baskaran S., Voise R. D. and Young J. S. (2005). Surfactant assisted processing of carbon nanotube/polymer composites. Chem. Mater. 12: 1049–1052 · doi:10.1021/cm9906396
[12] Qian D., Dickey E. C., Andrews R. and Rantell T. (2000). Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76: 2868–2870 · doi:10.1063/1.126500
[13] Tibbetts G. G. and McHugh J. (1999). Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices. J. Mater. Res. 4: 2871–2880 · doi:10.1557/JMR.1999.0383
[14] Xu X. J., Thwe M. M., Shearwood C. and Liao K. (2002). Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films. Appl. Phys. Lett. 81: 2833–2835 · doi:10.1063/1.1511532
[15] Cadek M., Coleman J. N., Barron V., Hedicke K. and Blau W. J. (2002). Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 82: 5123–5125 · doi:10.1063/1.1533118
[16] Ruan L. S., Gao P., Yang X. G. and Yu T. X. (2003). Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 44: 5643–5654 · doi:10.1016/S0032-3861(03)00628-1
[17] Gojny F. H., Wichmann M. H. G., Kopke U., Fiedler B. and Schulte K. (2004). Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nantube content. Compos. Sci. Technol. 64: 2363–2371 · doi:10.1016/j.compscitech.2004.04.002
[18] Gojny F. H., Wichmann M. H. G., Kopke U., Fiedler B. and Schulte K. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative. Compos. Sci. Technol. 65: 2300–2313 · doi:10.1016/j.compscitech.2005.04.021
[19] Andrew R., Jacques D., Minot M. and Rantell T. (2002). Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Engng. 287: 395–403 · doi:10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO;2-S
[20] Santare, M. H., Tang, W., Novotny, J. E., Advani, S. G.: Mechanical characterization of a nanotube-polyethylene composite material. In: Proceedings of IMECE’03, paper 43351.2003. ASME, Washington, DC
[21] Schadler L. S., Giannaris S. C. and Ajayan P. M. (1998). Load transfer in carbon epoxy composite. Appl. Phys. Lett. 73: 3842–3844 · doi:10.1063/1.122911
[22] Andrews R., Jacques D., Rao A. M., Rantell T., Derbyshire F. and Chen Y. (1999). Nanotube composites carbon fibers. Appl. Phys. Lett. 75: 1329–1331 · doi:10.1063/1.124683
[23] Vigolo B., Penicaud A., Coulon C., Sauder C., Pailler R. and Journet C. (2000). Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290: 1331–1334 · doi:10.1126/science.290.5495.1331
[24] Thostenson E. T. and Chou T.-W. (2002). Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J. Phys. D: Appl. Phys. 35: 77–80 · doi:10.1088/0022-3727/35/16/103
[25] Ajayan P. M., Schadler L. S., Giannaris C. and Rubio A. (2002). Single-walled nanotube-polymer composites: strength and weaknesses. Adv. Mater. 12: 750–753 · doi:10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
[26] Gojny F. H., Wichmann, Nastalczyk J., Roslaniec Z., Schulte K. (2003). Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem. Phys. Lett. 370: 820–824 · doi:10.1016/S0009-2614(03)00187-8
[27] Ding D., Eitan A., Fisher F. T., Chen X., Dikin D. X., Andrews R., Brinson L. C., Schadler L. S. and Ruoff R. S. (2003). Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites. Nano Lett. 11: 1593–1597 · doi:10.1021/nl0345973
[28] Eitan A., Fisher F. T., Andrews R., Brinson L. C. and Schadler L. (2006). Reinforcement mechanisms in MWCNT- filled polycarbonate. Compos. Sci. Technol. 66: 1162–1173 · doi:10.1016/j.compscitech.2005.10.004
[29] Fisher F. T. (2002). Nanomechanics and the viscoelastic behavior of carbon nanotube reinforced polymers. Mechanical Engineering, Northwestern University, Evanston, IL
[30] Fisher, T. F., Lee, K. C., Brinson, L. C.: Elastic and viscoelastic properties of non-bulk polymer interphases in nanotube-reinforced polymers. SEM 2005 Annual Conference on Experimental and Applied Mechanics, June 7–9, Portland, OR (2005)
[31] Seidel G. D. and Lagoudas D. C. (2006). Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38: 884–907 · doi:10.1016/j.mechmat.2005.06.029
[32] Gao X.-L. and Li K. (2005). A Shear-lag model for carbon nanotube-reinforced polymer composites. Int. J. Solids Struct. 42: 1649–1667 · Zbl 1120.74419 · doi:10.1016/j.ijsolstr.2004.08.020
[33] Haque A. and Ramasetty A. (2005). Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites. Compos. Struct. 71: 68–77 · doi:10.1016/j.compstruct.2004.09.029
[34] Li C. and Chou T.-W. (2003). Multiscale modeling of carbon nanotube reinforced polymer composites. J. Nanosci. Nanotech. 3: 1–8 · doi:10.1166/jnn.2003.212
[35] Chen X. L. and Liu Y. J. (2004). Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites. Compos. Sci. Technol. 29: 1–11
[36] Chen X. L. and Liu Y. J. (2003). Evaluations of the effective material properties of carbon anotube-based composites using a nanoscale representative volume element. Mech. Mater. 35: 69–81 · doi:10.1016/S0167-6636(02)00200-4
[37] Hu N., Fukunaga H., Lu C., Kameyana M. and Yan B. (2005). Prediction of elastic properties of carbon nanotube reinforced composites. Proc. R. Soc. A 461: 1685–1710 · doi:10.1098/rspa.2004.1422
[38] Hu, N., Fukunaga, H.: Prediction of macroscopic mechanical properties of carbon nanotube reinforced composites. International Conference on Smart Materials Structures and Systems, July 8–30, Bangalore, India (2005)
[39] Liu Y. J. and Chen X. L. (2003). Continuum models of carbon nanotube-based composites using the boundary element method. Electron. J. Bound. Elements l: 316–335
[40] Qian D., Dickey E. C., Andrews R. and Rantell T. (2000). Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76: 2868–2870 · doi:10.1063/1.126500
[41] Lau K. T. and Shi S. Q. (2002). Failure mechanics of carbon nanotube/epoxy composites pretreated in different temperature environments. Carbon 40: 965–968 · doi:10.1016/S0008-6223(02)00086-6
[42] Wei C. Y., Cho K. and Srivastava D. (2003). Tensile yielding of multiwall carbon nanotubes. Appl. Phys. Lett. 82: 2512–2514 · doi:10.1063/1.1567041
[43] Lau K. T., Chipara M., Ling H. Y. and Hui D. (2004). On the effective elastic moduli of carbon nanotubes for nanocomposites structures. Composites Part B. 35: 95–101 · doi:10.1016/j.compositesb.2003.08.008
[44] Christensen R. M. (1982). Theory of Viscoelasticity: An Introduction. Academic, New York · Zbl 0503.47032
[45] McCartney, L. N.: Analytical models of stress transfer in unidirectional composites and cross-ply laminates, and their application to the prediction of matrix/transverse cracking. In: Local Mechanics Concepts for Composite Material Systems (Reddy, J. N., Reifsnider K. L., eds.), Proc. IUTAM Symposium, Blacksburg, VA, October 28–31, pp. 251–282. Berlin: Springer 1991.
[46] Nairn J. A. (1997). On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mech. Mater. 26: 63–80 · doi:10.1016/S0167-6636(97)00023-9
[47] Zhang J. and Herrmann K. P. (1999). Stiffness degradation induced by multilayer intralaminar cracking in composite laminates. Composite Part A. 30: 683–706 · doi:10.1016/S1359-835X(98)00106-7
[48] Li C. and Chou T.-W. (2003). Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 63: 1517–1524 · doi:10.1016/S0266-3538(03)00072-1
[49] Li C. and Chou T.-W. (2003). A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40: 2487–2499 · Zbl 1032.74606 · doi:10.1016/S0020-7683(03)00056-8
[50] Abate J. and Valko P. P. (2004). Multi-precision Laplace transform inversion. Int. J. Numer. Meth. Engng. 60: 979–993 · Zbl 1059.65118 · doi:10.1002/nme.995
[51] Brinson L. C. and Lin W. S. (1998). Comparison of micromechanics methods for effective properties of multiphase viscoelastic compounds. Compos. Struct. 41: 353–367 · doi:10.1016/S0263-8223(98)00019-1
[52] Fisher F. T., Bradshaw R. D. and Brinson L. C. (2003). Fiber waviness in nanotube-reinforced polymer composites – I: Modulus predictions using effective nanotube properties. Compos. Sci. Technol. 63: 1689–1703 · doi:10.1016/S0266-3538(03)00069-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.