×

On symplectic fillings of Lens spaces. (English) Zbl 1137.57026

The author obtains a complete classification of the symplectic fillings of the lens space \((L(p, q), \bar\xi_{st})\) up to orientation preserving diffeomorphisms, where \(\bar\xi_{st}\) is the contact structure induced from the standard structure \(\xi_{st}\) on the \(3\)-sphere \(S^3\). We assume that \(p>q\geq1\) are coprime integers. The rational number \(p/(p-q)\) is uniquely expressed as a continued fraction \([b_1,\dots, b_k]\) with \(b_1,\dots, b_k\geq2\). Let \(\mathbb Z_{p,q}\subset\mathbb Z^k\) be the set of \(k\)-tuples of non-negative integers \(\mathbf n=(n_1,\dots, n_k)\) such that each of the denominators appearing in the continued fraction \([n_1,\dots, n_k]\) is positive and \([n_1,\dots, n_k]=0\). Let \(N(\mathbf n)\) be the closed oriented \(3\)-manifold given by surgery on \(S^3\) along a certain framed link \(L=\bigcup L_i\) of \(k\) components with Euler numbers \(n_1,\dots, n_k\) respectively. By the condition \([n_1,\dots, n_k]=0\), there exists an orientation preserving diffeomorphism \(\varphi: N(\mathbf n) \to S^1\times S^2\). Let \(\mathbf L\subset N(\mathbf n)\) be the thick framed link obtained by adding \(b_i-n_i\) meridian framed links of Euler number \(-1\) to each component \(L_i\) of \(L\). Define \(W_{p,q}(\mathbf n)\) to be the smooth \(4\)-manifold with boundary obtained by attaching \(2\)-handles to \(S^1\times D^3\) along the framed link \(\varphi(\mathbf L)\subset S^1\times S^3\).
The main results are summarized as follows (Theorem 1.1): (1) Let \((W, \omega)\) be a symplectic filling of the contact \(3\)-manifold \((L(p, q), \bar\xi_{st})\). Then there exists \(\mathbf n\in\mathbb Z_{p,q}\) such that \(W\) is orientation preserving diffeomorphic to a smooth blowup of \(W_{p,q}(\mathbf n)\). (2) For every \(\mathbf n\in\mathbb Z_{p,q}\), the \(4\)-manifold \(W_{p,q}(\mathbf n)\) carries a symplectic form \(\omega\) such that \((W_{p,q}(\mathbf n), \omega)\) is a symplectic filling of the contact \(3\)-manifold \((L(p, q), \bar\xi_{st})\). Moreover, there are no classes in \(H_2(W_{p,q}(\mathbf n); \mathbb Z)\) with self-intersection equal to \(-1\). (3) Let \(\mathbf n\in\mathbb Z_{p,q}\) and \(\mathbf n^\prime\in \mathbb Z_{p^\prime,q^\prime}\). Then \(W_{p,q}(\mathbf n)\sharp r\overline{\mathbb{CP}}^2\) is orientation preserving diffeomorphic to \(W_{p^\prime, q^\prime}(\mathbf n^\prime)\sharp s\overline{\mathbb{CP}}^2\) if and only if: (a) \((p^\prime, s)=(p, r)\) and \(4(q^\prime, \mathbf n^\prime)= (q, \mathbf n)\), or (b) \((p^\prime, s)=(p, r)\) and \((q^\prime, \mathbf n^\prime) =(\overline q, \overline{\mathbf n})\), where \(\overline q\) denotes the only integer satisfying \(p>\overline q\geq1, mod\;p\) and \(\overline{\mathbf n}= (n_k,\dots,n_1)\) for \(\mathbf n=(n_1,\dots,n_k)\).
The arguments of the proof are based on Kirby calculus for surgeries. The proof (1) uses a result (Lemma 3.1) of D. McDuff [J. Am. Math. Soc. 3, 679–712 (1990; Zbl 0723.53019)] on the existence of J-holomorphic curves. The proof of (2) uses a Legendrian band connected sum by R. E. Gompf [Ann. Math. 148, 619–693 (1998; Zbl 0919.57012)]. The proof of (3) uses an invariant of spin structures on a closed oriented \(3\)-manifold of R. E. Gompf [loc. cit.] above, and non-existence of \(2\)-spheres of self-intersection \(-1\) in a Stein \(4\)-manifold by the author and G. Matić [Topology Appl. 88, 55–66 (1998; Zbl 0978.53122)].
In the light of the results obtained in this paper, the author conjectures that a Stein filling of \((L(p, q), \bar\xi_{st})\) is diffeomorphic to \(W_{p,q}(\mathbf n)\).

MSC:

57R17 Symplectic and contact topology in high or arbitrary dimension
53D35 Global theory of symplectic and contact manifolds

References:

[1] W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. · Zbl 0718.14023
[2] Francis Bonahon, Difféotopies des espaces lenticulaires, Topology 22 (1983), no. 3, 305 – 314 (French). · Zbl 0526.57009 · doi:10.1016/0040-9383(83)90016-2
[3] Jan Arthur Christophersen, On the components and discriminant of the versal base space of cyclic quotient singularities, Singularity theory and its applications, Part I (Coventry, 1988/1989) Lecture Notes in Math., vol. 1462, Springer, Berlin, 1991, pp. 81 – 92. · Zbl 0735.14002 · doi:10.1007/BFb0086376
[4] Yakov Eliashberg, Topological characterization of Stein manifolds of dimension >2, Internat. J. Math. 1 (1990), no. 1, 29 – 46. · Zbl 0699.58002 · doi:10.1142/S0129167X90000034
[5] Yakov Eliashberg, On symplectic manifolds with some contact properties, J. Differential Geom. 33 (1991), no. 1, 233 – 238. · Zbl 0735.53021
[6] Yakov Eliashberg, Filling by holomorphic discs and its applications, Geometry of low-dimensional manifolds, 2 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp. 45 – 67. · Zbl 0731.53036
[7] Yakov Eliashberg and Maia Fraser, Classification of topologically trivial Legendrian knots, Geometry, topology, and dynamics (Montreal, PQ, 1995) CRM Proc. Lecture Notes, vol. 15, Amer. Math. Soc., Providence, RI, 1998, pp. 17 – 51. · Zbl 0907.53021
[8] Ronald Fintushel and Ronald J. Stern, Rational blowdowns of smooth 4-manifolds, J. Differential Geom. 46 (1997), no. 2, 181 – 235. · Zbl 0896.57022
[9] Emmanuel Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000), no. 3, 615 – 689 (French). · Zbl 1186.53097 · doi:10.1007/s002220000082
[10] Herman Gluck, The embedding of two-spheres in the four-sphere, Bull. Amer. Math. Soc. 67 (1961), 586 – 589. · Zbl 0173.51402
[11] Robert E. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998), no. 2, 619 – 693. · Zbl 0919.57012 · doi:10.2307/121005
[12] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307 – 347. · Zbl 0592.53025 · doi:10.1007/BF01388806
[13] Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. · Zbl 0933.57020
[14] Ko Honda, On the classification of tight contact structures. I, Geom. Topol. 4 (2000), 309 – 368. · Zbl 0980.57010 · doi:10.2140/gt.2000.4.309
[15] Paolo Lisca, Symplectic fillings and positive scalar curvature, Geom. Topol. 2 (1998), 103 – 116. · Zbl 0942.53050 · doi:10.2140/gt.1998.2.103
[16] Paolo Lisca, On lens spaces and their symplectic fillings, Math. Res. Lett. 11 (2004), no. 1, 13 – 22. · Zbl 1055.57035 · doi:10.4310/MRL.2004.v11.n1.a2
[17] P Lisca, On symplectic fillings of lens spaces, talk at the conference Holomorphic Curves and Low-Dimensional Topology, Institute for Advanced Study, March 25-29, 2002.
[18] P. Lisca and G. Matić, Stein 4-manifolds with boundary and contact structures, Topology Appl. 88 (1998), no. 1-2, 55 – 66. Symplectic, contact and low-dimensional topology (Athens, GA, 1996). · Zbl 0978.53122 · doi:10.1016/S0166-8641(97)00198-3
[19] Dusa McDuff, The structure of rational and ruled symplectic 4-manifolds, J. Amer. Math. Soc. 3 (1990), no. 3, 679 – 712. · Zbl 0723.53019
[20] Dusa McDuff, Singularities and positivity of intersections of \?-holomorphic curves, Holomorphic curves in symplectic geometry, Progr. Math., vol. 117, Birkhäuser, Basel, 1994, pp. 191 – 215. With an appendix by Gang Liu.
[21] John D. McCarthy and Jon G. Wolfson, Symplectic gluing along hypersurfaces and resolution of isolated orbifold singularities, Invent. Math. 119 (1995), no. 1, 129 – 154. · Zbl 0854.57010 · doi:10.1007/BF01245176
[22] P. Orlik and P. Wagreich, Algebraic surfaces with \?*-action, Acta Math. 138 (1977), no. 1-2, 43 – 81. · Zbl 0352.14016 · doi:10.1007/BF02392313
[23] Hiroshi Ohta and Kaoru Ono, Symplectic fillings of the link of simple elliptic singularities, J. Reine Angew. Math. 565 (2003), 183 – 205. · Zbl 1044.57008 · doi:10.1515/crll.2003.100
[24] Hiroshi Ohta and Kaoru Ono, Simple singularities and topology of symplectically filling 4-manifold, Comment. Math. Helv. 74 (1999), no. 4, 575 – 590. · Zbl 0957.57022 · doi:10.1007/s000140050106
[25] Oswald Riemenschneider, Deformationen von Quotientensingularitäten (nach zyklischen Gruppen), Math. Ann. 209 (1974), 211 – 248 (German). · Zbl 0275.32010 · doi:10.1007/BF01351850
[26] Jan Stevens, On the versal deformation of cyclic quotient singularities, Singularity theory and its applications, Part I (Coventry, 1988/1989) Lecture Notes in Math., vol. 1462, Springer, Berlin, 1991, pp. 302 – 319. · Zbl 0747.14002 · doi:10.1007/BFb0086390
[27] Margaret Symington, Symplectic rational blowdowns, J. Differential Geom. 50 (1998), no. 3, 505 – 518. · Zbl 0935.57035
[28] Jonathan Wahl, Smoothings of normal surface singularities, Topology 20 (1981), no. 3, 219 – 246. · Zbl 0484.14012 · doi:10.1016/0040-9383(81)90001-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.