×

On non-\(M\)-cosingular completely \(\oplus\)-supplemented modules. (English) Zbl 1137.16005

Summary: It is shown that any non-\(M\)-cosingular \(\oplus\)-supplemented module \(M\) is \((D_3)\) if and only if \(M\) has the summand intersection property. Let \(N\in\sigma[M]\) be any module such that \(\overline Z_M(N)\) has a coclosure in \(N\). Then we prove that \(N\) is (completely) \(\oplus\)-supplemented if and only if \(N=\overline Z_M^2(N)\oplus K\) for some submodule \(K\) of \(N\) such that \(\overline Z_M^2(N)\) and \(K\) both are (completely) \(\oplus\)-supplemented.

MSC:

16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
16D40 Free, projective, and flat modules and ideals in associative algebras
Full Text: DOI

References:

[1] Alkan, M., Harmanci, A.: On summand sum and summand intersection property of modules. Turkish J. Math. 26, 131–147 (2002) · Zbl 1011.16001
[2] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting modules. In: Supplements and Projectivity in Module Theory Series: Frontiers in Mathematics (2006) · Zbl 1102.16001
[3] Ganesan, L., Vanaja, N.: Strongly discrete modules. Comm. Algebra (to appear) · Zbl 1118.16007
[4] Garcia, J.L.: Properties of direct summands of modules. Comm. Algebra 17, 73–92 (1989) · Zbl 0659.16016 · doi:10.1080/00927878908823714
[5] Hausen, J.: Modules with the summand intersection property. Comm. Algebra 17, 135–148 (1989) · Zbl 0667.16020 · doi:10.1080/00927878908823718
[6] Harmanci, A., Keskin, D., Smith, P.F.: On supplemented modules. Acta Math. Hungar. 83(1-2), 161–169 (1999) · Zbl 0933.16008 · doi:10.1023/A:1006627906283
[7] Idelhadj. A., Tribak, R.: On some properties of supplemented modules. Int. J. Math. Math. Sci. 69, 4373–4387 (2003) · Zbl 1066.16001
[8] Keskin, D., Xue, W.: Generalizations of lifting modules. Acta Math. Hungar. 91(3), 253–261 (2001) · Zbl 0980.16003 · doi:10.1023/A:1010675423852
[9] Keskin, D.: On lifting modules. Comm. Algebra 28(7), 3427–3440 (2000) · Zbl 0960.16001 · doi:10.1080/00927870008827034
[10] Lam, T.Y.: Lectures on Modules and Rings. Springer, Berlin Heidelberg New York (1999) · Zbl 0911.16001
[11] Mohamed, S.H., Müller, B.J.: Continuous and discrete modules. In: London Math. Soc. LNS 147. Cambridge University Press, Cambridge (1990) · Zbl 0701.16001
[12] Smith, P.F., Tercan, A.: Generalizations of CS-modules. Comm. Algebra 21(6), 1809–1847 (1993) · Zbl 0779.16002 · doi:10.1080/00927879308824655
[13] Talebi, Y., Vanaja, N.: The Torsion theory cogenerated by \(M\) -small modules. Comm. Algebra 30(3), 1449–1460 (2002) · Zbl 1005.16029 · doi:10.1080/00927870209342390
[14] Wisbauer, R.: Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia (1991) · Zbl 0746.16001
[15] Wang, Y.: A note on modules with \((D_{11}^+)\) . Southeast Asian Bull. Math. 29(5), 999–1002 (2005) · Zbl 1101.16005
[16] Zhou, D.: On non-M-singular modules with ( \(C^+_{11}\) ). Acta Math. Hungar. 97(3), 265–271 (2002) · Zbl 1012.16004 · doi:10.1023/A:1020811229645
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.