×

Discrete conservation of nonnegativity for elliptic problems solved by the \(hp\)-FEM. (English) Zbl 1135.65395

Summary: Most results related to discrete nonnegativity conservation principles (DNCP) for elliptic problems are limited to finite differences and lowest-order finite element methods (FEM). In this paper we show that a straightforward extension to higher-order finite element methods (\(hp\)-FEM) in the classical sense is not possible. We formulate a weaker DNCP for the Poisson equation in one spatial dimension and prove it using an interval computing technique. Numerical experiments related to the extension of this result to 2D are presented.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Full Text: DOI

References:

[1] Ciarlet, P. G., Discrete maximum principle for finite difference operators, Aequationes Math., 4, 338-352 (1970) · Zbl 0198.14601
[2] Ciarlet, P. G.; Raviart, P. A., Maximum principle and uniform convergence for the finite element method, Comput. Meth. Appl. Mech. Eng., 2, 17-31 (1973) · Zbl 0251.65069
[3] Höhn, W.; Mittelmann, H. D., Some remarks on the discrete maximum principle for finite elements of higher-order, Computing, 27, 145-154 (1981) · Zbl 0449.65075
[4] Jaulin, L.; Kieffer, M.; Didrit, O.; Walter, E., Applied Interval Analysis (2001), Springer-Verlag: Springer-Verlag London · Zbl 1023.65037
[5] Karátson, J.; Korotov, S., Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions, Numer. Math., 99, 669-698 (2005) · Zbl 1067.65127
[6] Korotov, S.; Křížek, M.; Neittaanmäki, P., Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle, Math. Comput., 70, 107-119 (2000) · Zbl 1001.65125
[7] Křížek, M.; Liu, L., On the maximum and comparison principles for a steady-state nonlinear heat conduction problem, Z. Angew. Math. Mech., 83, 559-563 (2003) · Zbl 1030.35061
[8] Šolín, P., Partial Differential Equations and the Finite Element Method (2005), John Wiley and Sons
[9] Šolín, P.; Segeth, K.; Doležel, I., Higher-Order Finite Element Methods (2003), Chapman and Hall/CRC Press: Chapman and Hall/CRC Press Boca Raton
[10] P. Šolín, T. Vejchodský, On the Discrete Maximum Principle for the hp-FEM, submitted for publication.; P. Šolín, T. Vejchodský, On the Discrete Maximum Principle for the hp-FEM, submitted for publication. · Zbl 1153.35313
[11] Vejchodský, T., On the nonnegativity conservation in semidiscrete parabolic problems, (Křížek, M.; Neittaanmäki, P.; Glowinski, R.; Korotov, S., Conjugate Gradients Algorithms and Finite Element Methods (2004), Springer-Verlag: Springer-Verlag Berlin), 197-210 · Zbl 1073.65096
[12] Vejchodský, T., Method of lines and conservation of nonnegativity, (Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004). Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004), Jyväskylä, Finland (2004)) · Zbl 1157.65496
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.