×

Cubic forms in 14 variables. (English) Zbl 1135.11031

Let \(F(\vec x)\), \(\vec x:= (x_1,\dots, x_n)\), be a cubic homogeneous polynomial, let \(F(\vec x)\in\mathbb{Z}[\vec x]\), and let \(X\) be the projective hypersurface in \(\mathbb{P}^{n-1}\) defined by the equation \(F(\vec x)= 0\). The author proves that \(X(\mathbb{Q})\neq\emptyset\) for \(n\geq 14\) and advances the following conjectures:
(i) if \(n\geq 10\), then \(X(\mathbb{Q})\neq\emptyset\); (ii) if \(5\leq n\leq 9\) and the cubic form \(F(\vec x)\) is non-singular, then the hypersurface \(X\) satisfies the Hasse principle; (iii) if \(n\in\{3, 4\}\), then \(X(\mathbb{Q})\neq\emptyset\) as soon as \(X(\mathbb{Q}_p)\neq\emptyset\) for every \(p\)-adic completion \(\mathbb{Q}_p\) and the Brauer-Manin obstruction is empty.
Although the author’s strategy is similar in several ways to that of H. Davenport [Proc. R. Soc. Lond., Ser. A 272, 285–303 (1963; Zbl 0107.04102)], extending the admissible range for \(n\) from Davenport’s \(n\geq 16\) to \(n\geq 14\) requires substantial new ideas. The author supplements Weyl’s inequality with van der Corput’s method combined with a certain averaging process; the rather technical details of that argument can not be described here.
Reviewer: B. Z. Moroz (Bonn)

MSC:

11G35 Varieties over global fields
11D25 Cubic and quartic Diophantine equations
11E72 Galois cohomology of linear algebraic groups
11E76 Forms of degree higher than two
11P55 Applications of the Hardy-Littlewood method
14G25 Global ground fields in algebraic geometry
11L15 Weyl sums

Citations:

Zbl 0107.04102
Full Text: DOI

References:

[1] Baker, R.C.: Diagonal cubic equations II. Acta Arith. 53, 217–250 (1989) · Zbl 0642.10041
[2] Balasubramanian, R.: An improvement on a theorem of Titchmarsh on the mean square of \(\big|\zeta\big(\frac{1}{2}+it\big)\big|\) . Proc. Lond. Math. Soc., III. Ser. 36, 540–576 (1978) · Zbl 0375.10025 · doi:10.1112/plms/s3-36.3.540
[3] Browning, T.D., Heath-Brown, D.R.: Counting rational points on hypersurfaces. J. Reine Angew. Math. 584, 83–115 (2005) · Zbl 1079.11033 · doi:10.1515/crll.2005.2005.584.83
[4] Cassels, J.W.S., Guy, M.J.T.: On the Hasse principle for cubic surfaces. Mathematika 13, 111–120 (1966) · Zbl 0151.03405 · doi:10.1112/S0025579300003879
[5] Davenport, H.: Cubic forms in sixteen variables. Proc. R. Soc. Lond., Ser. A 272, 285–303 (1963) · Zbl 0107.04102 · doi:10.1098/rspa.1963.0054
[6] Davenport, H.: Analytic Methods for Diophantine Equations and Diophantine Inequalities. 2nd edn., Cambridge Mathematical Library. Cambridge University Press, Cambridge (2005) · Zbl 1125.11018
[7] Heath-Brown, D.R.: Mean value theorems for the Riemann Zeta-function. Théorie des Nombres, Sémin. Delange-Pisot-Poitou, Paris, 1979–80. Prog. Math. 12, 123–134 (1981)
[8] Hooley, C.: On nonary cubic forms. J. Reine Angew. Math. 386, 32–98 (1988) · Zbl 0641.10019 · doi:10.1515/crll.1988.386.32
[9] Pleasants, P.A.B.: Cubic polynomials over algebraic number fields. J. Number Theory 7, 310–344 (1975) · Zbl 0328.12003 · doi:10.1016/0022-314X(75)90024-4
[10] Selmer, E.S.: The Diophantine equation a x 3+b y 3+c z 3=0. Acta Math. 85, 203–362 (1951) · Zbl 0042.26905 · doi:10.1007/BF02395746
[11] Swinnerton-Dyer, H.P.F.: The solubility of diagonal cubic surfaces. Ann. Sci. Éc. Norm. Supér., IV. Sér. 34, 891–912 (2001) · Zbl 1003.11028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.