×

The percolation signature of the spin glass transition. (English) Zbl 1134.82047

Summary: Magnetic ordering at low temperature for Ising ferromagnets manifests itself within the associated Fortuin-Kasteleyn (FK) random cluster representation as the occurrence of a single positive density percolating network. In this paper we investigate the percolation signature for Ising spin glass ordering-both in short-range (EA) and infinite-range (SK) models-within a two-replica FK representation and also within the different Chayes-Machta-Redner two-replica graphical representation. Based on numerical studies of the \(\pm J\) EA model in three dimensions and on rigorous results for the SK model, we conclude that the spin glass transition corresponds to the appearance of two percolating clusters of unequal densities.

MSC:

82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B43 Percolation

References:

[1] Edwards, S., Anderson, P.W.: Theory of spin glasses. J. Phys. F 5, 965–974 (1975) · doi:10.1088/0305-4608/5/5/017
[2] Sherrington, D., Kirkpatrick, S.: Solvable model of a spin glass. Phys. Rev. Lett. 35, 1792–1796 (1975) · doi:10.1103/PhysRevLett.35.1792
[3] Marinari, E., Parisi, G., Ricci-Tersenghi, F., Ruiz-Lorenzo, J.J., Zuliani, F.: Replica symmetry breaking in spin glasses: theoretical foundations and numerical evidences. J. Stat. Phys. 98, 973–1047 (2000) · Zbl 1015.82037 · doi:10.1023/A:1018607809852
[4] Newman, C.M., Stein, D.L.: Topical review: ordering and broken symmetry in short-ranged spin glasses. J. Phys.: Condens. Matter 15, R1319–R1364 (2003) · doi:10.1088/0953-8984/15/32/202
[5] Binder, K., Young, A.P.: Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986) · doi:10.1103/RevModPhys.58.801
[6] Kasteleyn, P.W., Fortuin, C.M.: Phase transitions in lattice systems with random local properties. J. Phys. Soc. Jpn. (Suppl.) 26, 11–14 (1969)
[7] Fortuin, C.M., Kasteleyn, P.W.: On the random-cluster model, I: introduction and relation to other models. Physica 57, 536–564 (1972) · doi:10.1016/0031-8914(72)90045-6
[8] Aizenman, M., Chayes, J.T., Chayes, L., Newman, C.M.: The phase boundary in dilute and random Ising and Potts ferromagnets. J. Phys. A Lett. 20, L313–L318 (1987)
[9] Imbrie, J., Newman, C.M.: An intermediate phase with slow decay of correlations in one dimensional 1/|x|2 percolation, Ising and Potts models. Commun. Math. Phys. 118, 303–336 (1988) · doi:10.1007/BF01218582
[10] Sweeny, M.: Monte Carlo study of weighted percolation clusters relevant to the Potts model. Phys. Rev. B 27, 4445–4455 (1983) · doi:10.1103/PhysRevB.27.4445
[11] Swendsen, R.H., Wang, J.-S.: Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58, 86–88 (1987) · doi:10.1103/PhysRevLett.58.86
[12] Wolff, U.: Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 62, 361–364 (1989) · doi:10.1103/PhysRevLett.62.361
[13] Chayes, L., Machta, J., Redner, O.: Graphical representations for Ising systems in external fields. J. Stat. Phys. 93, 17–32 (1998) · Zbl 0963.82009 · doi:10.1023/B:JOSS.0000026726.43558.80
[14] Redner, O., Machta, J., Chayes, L.F.: Graphical representations and cluster algorithms for critical points with fields. Phys. Rev. E 58, 2749–2752 (1998) · Zbl 0963.82009 · doi:10.1103/PhysRevE.58.2749
[15] Newman, C.M., Stein, D.L.: Short-range spin glasses: results and speculations. In: Bolthausen, E., Bovier, A. (eds.) Spin Glasses. Lecture Notes in Mathematics, vol. 100, pp. 159–175. Springer, Berlin (2007) · Zbl 1116.82029
[16] Burton, R.M., Keane, M.: Density and uniqueness in percolation. Commun. Math. Phys. 121, 501–505 (1989) · Zbl 0662.60113 · doi:10.1007/BF01217735
[17] Gandolfi, A., Keane, M., Newman, C.M.: Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses. Probab. Theory Relat. Fields 92, 511–527 (1992) · Zbl 0767.60098 · doi:10.1007/BF01274266
[18] Aizenman, M., Bricmont, J., Lebowitz, J.L.: Percolation of the minority spins in high-dimensional Ising models. J. Stat. Phys. 49, 859–865 (1987) · Zbl 0960.82503 · doi:10.1007/BF01009363
[19] Swendsen, R.H., Wang, J.-S.: Replica Monte Carlo simulations of spin glasses. Phys. Rev. Lett. 57, 2607–2609 (1986) · doi:10.1103/PhysRevLett.57.2607
[20] Wang, J.-S., Swendsen, R.H.: Low temperature properties of the {\(\pm\)}J Ising spin glass in two dimensions. Phys. Rev. B 38, 4840–4844 (1988) · doi:10.1103/PhysRevB.38.4840
[21] Wang, J.-S., Swendsen, R.H.: Replica Monte Carlo simulation (revisited). Prog. Theor. Phys. Suppl. 157, 317–323 (2005) · Zbl 1077.82527 · doi:10.1143/PTPS.157.317
[22] Edwards, R.G., Sokal, A.D.: Generalizations of the Fortuin–Kasteleyn–Swendsen–Wang representation and Monte Carlo algorithm. Phys. Rev. D 38, 2009–2012 (1988) · doi:10.1103/PhysRevD.38.2009
[23] Houdayer, J.: A cluster Monte Carlo algorithm for 2-dimensional spin glasses. Eur. Phys. J. B 22, 479–484 (2001) · doi:10.1007/PL00011151
[24] Jörg, T.: Cluster Monte Carlo algorithms for diluted spin glasses. Prog. Theor. Phys. Suppl. 157, 349–352 (2005) · doi:10.1143/PTPS.157.349
[25] Jörg, T.: Critical behavior of the three-dimensional bond-diluted Ising spin glass: finite-size scaling functions and universality. Phys. Rev. B 73, 224431 (2006) · doi:10.1103/PhysRevB.73.224431
[26] Machta, J., Newman, M.E.J., Chayes, L.B.: Replica-exchange algorithm and results for the three-dimensional random field Ising model. Phys. Rev. E 62, 8782–8789 (2000) · doi:10.1103/PhysRevE.62.8782
[27] Coniglio, A., Klein, W.: Clusters and Ising critical droplets: a renormalisation group approach. J. Phys. A: Math. Gen. 13, 2775–2780 (1980) · doi:10.1088/0305-4470/13/8/025
[28] Coniglio, A., di Liberto, F., Monroy, G., Peruggi, F.: Cluster approach to spin glasses and the frustrated-percolation problem. Phys. Rev. B 44, 12605–12608 (1991) · doi:10.1103/PhysRevB.44.12605
[29] de Arcangelis, L., Coniglio, A., Peruggi, F.: Percolation transition in spin glasses. Europhys. Lett. 14, 515–519 (1991) · doi:10.1209/0295-5075/14/6/003
[30] Katzgraber, H.-G., Körner, M., Young, A.P.: Universality in three-dimensional Ising spin glasses: a Monte Carlo study. Phys. Rev. B 73, 224432 (2006) · doi:10.1103/PhysRevB.73.224432
[31] Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001) · Zbl 0979.05003
[32] Erdös, P., Rényi, E.: On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl 5, 17–61 (1960) · Zbl 0103.16301
[33] Ballesteros, H.G., Cruz, A., Fernandez, L.A., Martin-Mayor, V., Pech, J., Ruiz-Lorenzo, J.J., Tarancon, A., Tellez, P., Ullod, C.L., Ungil, C.: Critical behavior of the three-dimensional Ising spin glass. Phys. Rev. B 62, 14237–14245 (2000) · doi:10.1103/PhysRevB.62.14237
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.