×

A family of projective splitting methods for the sum of two maximal monotone operators. (English) Zbl 1134.47048

Summary: A splitting method for two monotone operators \(A\) and \(B\) is an algorithm that attempts to converge to a zero of the sum \(A + B\) by solving a sequence of subproblems, each of which involves only the operator \(A\), or only the operator \(B\). Prior algorithms of this type can all in essence be categorized into three main classes, the Douglas/Peaceman–Rachford class, the forward-backward class, and the little-used double-backward class. Through a certain “extended” solution set in a product space, we construct a fundamentally new class of splitting methods for pairs of general maximal monotone operators in Hilbert space.
Our algorithms are essentially standard projection methods, using splitting decomposition to construct separators. We prove convergence through Fejér monotonicity techniques, but showing Fejér convergence of a different sequence to a different set than in earlier splitting methods. Our projective algorithms converge under more general conditions than prior splitting methods, allowing the proximal parameter to vary from iteration to iteration, and even from operator to operator, while retaining convergence for essentially arbitrary pairs of operators. The new projective splitting class also contains noteworthy preexisting methods either as conventional special cases or excluded boundary cases.

MSC:

47J25 Iterative procedures involving nonlinear operators
90C25 Convex programming
47H05 Monotone operators and generalizations
49M27 Decomposition methods
47N10 Applications of operator theory in optimization, convex analysis, mathematical programming, economics
Full Text: DOI

References:

[1] Bauschke H.H. and Borwein J.M. (1996). On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3): 367–426 · Zbl 0865.47039 · doi:10.1137/S0036144593251710
[2] Bauschke H.H., Combettes P.L. and Reich S. (2005). The asymptotic behavior of the composition of two resolvents. Nonlin. Anal. 60(2): 283–301 · Zbl 1075.47033
[3] Browder F.E. (1965). Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces. Trans. Am. Math. Soc. 118: 338–351 · Zbl 0138.39903 · doi:10.1090/S0002-9947-1965-0180884-9
[4] Browder F.E. (1968). Nonlinear maximal monotone operators in Banach space. Math. Ann. 175: 89–113 · Zbl 0159.43901 · doi:10.1007/BF01418765
[5] Cimmino G. (1938). Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. Ric. Sci. Progr. Tecn. Econ. Naz. 1: 326–333 · JFM 64.1244.02
[6] Combettes P.L. (2004). Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6): 475–504 · Zbl 1153.47305 · doi:10.1080/02331930412331327157
[7] Eckstein J. (1994). Some saddle-function splitting methods for convex programming. Optim. Meth. Softw. 4(1): 75–83 · doi:10.1080/10556789408805578
[8] Eckstein J. and Bertsekas D.P. (1992). On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3): 293–318 · Zbl 0765.90073 · doi:10.1007/BF01581204
[9] Eckstein J. and Ferris M.C. (1998). Operator-splitting methods for monotone affine variational inequalities, with a parallel application to optimal control. INFORMS J. Comput. 10(2): 218–235 · Zbl 1034.90531 · doi:10.1287/ijoc.10.2.218
[10] Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Problems, chap. IX, pp. 299–340. North-Holland, Amsterdam (1983)
[11] Kaczmarz S. (1937). Angenäherte auflösung von systemen linearer gleichungen. Bull. Int. Acad. Pol. Sci. A. 1937: 355–357 · Zbl 0017.31703
[12] Kaczmarz, S.: Approximate solution of systems of linear equations. Int. J. Control. 57(6), 1269–1271 (1993) (Translated from the German) · Zbl 0817.65025
[13] Lawrence J. and Spingarn J.E. (1987). On fixed points of nonexpansive piecewise isometric mappings. Proc. Lond. Math. Soc. 55(3): 605–624 · Zbl 0605.47052 · doi:10.1112/plms/s3-55.3.605
[14] Lions P.-L. (1978). Une méthode itérative de résolution d’une inéquation variationnelle. Isr. J. Math. 31(2): 204–208 · Zbl 0395.49013 · doi:10.1007/BF02760552
[15] Lions P.-L. and Mercier B. (1979). Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6): 964–979 · Zbl 0426.65050 · doi:10.1137/0716071
[16] Minty G.J. (1962). Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29: 341–346 · Zbl 0111.31202 · doi:10.1215/S0012-7094-62-02933-2
[17] Passty G.B. (1979). Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2): 383–390 · Zbl 0428.47039 · doi:10.1016/0022-247X(79)90234-8
[18] Rockafellar R.T. (1970). On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149: 75–88 · Zbl 0222.47017 · doi:10.1090/S0002-9947-1970-0282272-5
[19] Solodov M.V. and Svaiter B.F. (1999). A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7(4): 323–345 · Zbl 0959.90038 · doi:10.1023/A:1008777829180
[20] Solodov M.V. and Svaiter B.F. (1999). A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1): 59–70 · Zbl 0961.90128
[21] Solodov M.V. and Svaiter B.F. (2000). Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program. 87(1): 189–202 · Zbl 0971.90062
[22] Spingarn J.E. (1983). Partial inverse of a monotone operator. Appl. Math. Optim. 10(3): 247–265 · Zbl 0524.90072 · doi:10.1007/BF01448388
[23] Tseng P. (2000). A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38(2): 431–446 · Zbl 0997.90062 · doi:10.1137/S0363012998338806
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.