×

Bidifferential calculi, bicomplex structure and its application to bihamiltonian systems. (English) Zbl 1134.37354

Summary: We study the relationship between the bihamiltonian formalism of completely integrable systems using the bidifferential calculi introduced by A. Dimakis and F. Müller-Hoissen [J. Phys. A, Math. Gen. 33, 957–974 (2000; Zbl 1043.37508)] and the bihamiltonian formulation of integrable systems with a finite number of degrees of freedom via the Frölicher–Nijenhuis geometry. This pair of bidifferential operators are used to construct alternative Lie algebroids as shown by Camacaro and Carinena. We find its connection to Finsler geometry. We also find the dispersionless integrable hierarchies using the bidifferential ideals. Finally, we lay out its connection to Gelfand–Zakharevich bihamiltonian geometry.

MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
53D17 Poisson manifolds; Poisson groupoids and algebroids
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

Citations:

Zbl 1043.37508
Full Text: DOI

References:

[1] DOI: 10.1088/0305-4470/33/5/311 · Zbl 1043.37508 · doi:10.1088/0305-4470/33/5/311
[2] DOI: 10.1023/A:1011028111581 · Zbl 0983.53064 · doi:10.1023/A:1011028111581
[3] DOI: 10.1088/0305-4470/34/12/305 · Zbl 1103.37309 · doi:10.1088/0305-4470/34/12/305
[4] DOI: 10.1088/0305-4470/33/20/101 · Zbl 0989.37063 · doi:10.1088/0305-4470/33/20/101
[5] DOI: 10.1088/0305-4470/33/48/313 · Zbl 0967.37035 · doi:10.1088/0305-4470/33/48/313
[6] Frölicher A., Proc. Ned. Acad. Wetensch. Ser. A 59 pp 338–
[7] DOI: 10.1007/978-3-662-02950-3 · doi:10.1007/978-3-662-02950-3
[8] Nijenhuis A., Indag. Math. 17 pp 390–
[9] Nijenhuis A., Indag. Math. 29 pp 475–
[10] Dorfman I. Ya., Nonlinear Science: Theory and Applications (1993)
[11] Kosmann-Schwarzbach Y., Ann. Inst. H. Poincaré Phys. 53 pp 35–
[12] DOI: 10.1063/1.523777 · Zbl 0383.35065 · doi:10.1063/1.523777
[13] DOI: 10.1016/0167-2789(81)90004-X · Zbl 1194.37114 · doi:10.1016/0167-2789(81)90004-X
[14] DOI: 10.1007/BF00996111 · Zbl 0837.17014 · doi:10.1007/BF00996111
[15] DOI: 10.1007/BF01815524 · Zbl 1005.53060 · doi:10.1007/BF01815524
[16] Chavchanidze G., Georgian Math. J. 10 pp 57–
[17] DOI: 10.1016/S0393-0440(03)00040-8 · Zbl 1056.70010 · doi:10.1016/S0393-0440(03)00040-8
[18] J. R. Camacaro and J. F. Carinena, Applied Differential Geometry and Mechanics, eds. W. Sarlet and F. Cantrijn (Univ. Gent, 2003) pp. 1–20.
[19] J. F. Carinena and E. Martinez, Poisson Geometry, Banach Center Publications 54 (2001) p. 201.
[20] Guha P., Arch. Math. (Brno) 40 pp 17–
[21] Vaisman I., Rend. Sem. Mat. Univ. Politec. Torino 52 pp 377–
[22] DOI: 10.1016/0022-1236(91)90057-C · Zbl 0739.58021 · doi:10.1016/0022-1236(91)90057-C
[23] DOI: 10.1007/978-1-4612-0345-2_6 · doi:10.1007/978-1-4612-0345-2_6
[24] Weinstein A., J. Diff. Geom. 18 pp 523– · Zbl 0524.58011 · doi:10.4310/jdg/1214437787
[25] Szilasi J., Lect. Math. 19 pp 7–
[26] Szilasi J., Acta Math. Acad. Paedagog. Nyhzi. (N.S.) 16 pp 33–
[27] DOI: 10.1016/S0393-0440(97)00034-X · Zbl 0930.35165 · doi:10.1016/S0393-0440(97)00034-X
[28] J. M. Nunes da Costa, J. Margarida and C.M. Marle, Differential Geometry and Applications (Brno, 1995) (Masaryk University, Brno, 1996) pp. 523–538. · Zbl 0862.58025
[29] Koszul J.-L., Astérisque pp 257–
[30] DOI: 10.1016/0393-0440(85)90009-9 · Zbl 0587.58004 · doi:10.1016/0393-0440(85)90009-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.