×

The construction of discretely conservative finite volume schemes that also globally conserve energy or entropy. (English) Zbl 1133.76030

Summary: This work revisits an idea that dates back to the early days of scientific computing, the energy method for stability analysis. It is shown that if the scalar nonlinear conservation law \[ \frac{\partial u}{\partial t}+\frac{\partial}{\partial x}f(u)=0 \] is approximated by the semi-discrete conservative scheme \[ \frac{du_{j}}{dt}+\frac{1}{\Delta x}\left(f_{j+\frac{1}{2}}-f_{j-\frac{1}{2}}\right)=0, \] then the energy of the discrete solution evolves at exactly the same rate as the energy of the true solution, provided that the numerical flux is evaluated by the formula \[ f_{j+\frac{1}{2}}=\int_{0}^{1}f(\hat{u})d\theta, \] where \[ \hat{u}(\theta)=u_{j}+\theta(u_{j+1}-u_{j}). \]
With careful treatment of boundary conditions, this provides a path to the construction of non-dissipative stable discretizations of the governing equations. If shock waves appear in the solution, the discretization must be augmented by appropriate shock operators to account for dissipation of energy by shock waves. These results are extended to systems of conservation laws, including the equations of incompressible flow and gas dynamics. In the case of viscous flow, it is also shown that shock waves can be fully resolved by non-dissipative discretizations of this type with a fine enough mesh, such that the cell Reynolds number \(\leq 2\).

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
35L65 Hyperbolic conservation laws

Software:

SHASTA

References:

[1] Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial Value Problems. Interscience, New York (1967) · Zbl 0155.47502
[2] Honein, A.E., Moin, P.: Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comput. Phys. 201, 531–545 (2004) · Zbl 1061.76044 · doi:10.1016/j.jcp.2004.06.006
[3] Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure. Appl. Math. 13, 217–137 (1960) · Zbl 0152.44802 · doi:10.1002/cpa.3160130205
[4] Gustafsson, B., Olsson, P.: High-order centered difference schemes with sharp shock resolution. J. Sci. Comput. 11, 229–260 (1996) · Zbl 0894.76049 · doi:10.1007/BF02088817
[5] Godunov, S.K.: A difference method for the numerical calculation of discontinous solutions of hydrodynamic equations. Math. Sb. 47, 271–306 (1959) · Zbl 0171.46204
[6] Boris, J.P., Book, D.L.: Flux corrected transport, SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11, 38–69 (1973) · Zbl 0251.76004 · doi:10.1016/0021-9991(73)90147-2
[7] Van Leer, B.: Towards the ultimate conservative difference scheme, II, monotonicity and conservation combined in a second order scheme. J. Comput. Phys. 14, 361–370 (1974) · Zbl 0276.65055 · doi:10.1016/0021-9991(74)90019-9
[8] Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference scheme. J. Comput. Phys. 43, 357–372 (1981) · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5
[9] Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983) · Zbl 0565.65050 · doi:10.1016/0021-9991(83)90136-5
[10] Liou, M.S., Steffen, C.J.: A new flux splitting scheme. J. Comput. Phys. 107, 22–39 (1993) · Zbl 0779.76056 · doi:10.1006/jcph.1993.1122
[11] Jameson, A.: Analysis and design of numerical schemes for gas dynamics 1. Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence. Int. J. Comput. Fluid Dyn. 4, 171–218 (1995) · doi:10.1080/10618569508904524
[12] Jameson, A.: Analysis and design of numerical schemes for gas dynamics 2. Artificial diffusion and discrete shock structure. Int. J. Comput. Fluid Dyn. 5, 1–38 (1995) · doi:10.1080/10618569508940734
[13] Godunov, S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk USSR 139, 521 (1961) · Zbl 0125.06002
[14] Mock, M.S.: Systems of conservation laws of mixed type. J. Differ. Equ. 37 (1980) · Zbl 0413.34017
[15] Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49, 151–164 (1983) · Zbl 0503.76088 · doi:10.1016/0021-9991(83)90118-3
[16] Mattsson, K.: Boundary operators for summation-by-parts operators. J. Sci. Comput. 18, 133–153 (2003) · Zbl 1024.76031 · doi:10.1023/A:1020342429644
[17] Shu, C.W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988) · Zbl 0662.65081 · doi:10.1137/0909073
[18] Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. (2006) · Zbl 0967.65098
[19] Jameson, A., Baker, T.J., Weatherill, N.P.: Calculation of inviscid transonic flow over a complete aircraft. AIAA Paper 86-0103, AIAA 24th Aerospace Sciences Meeting, Reno, January 1986
[20] Ham, F., Mattsson, K., Iaccarino, G., Moin, P.: Towards time-stable and accurate les on unstructured grids. In: Complex Effects in Large Eddy Simulation, Limassol, September 2005 · Zbl 1303.76036
[21] Hughes, T.J., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54, 223–234 (1986) · Zbl 0572.76068 · doi:10.1016/0045-7825(86)90127-1
[22] Gerritsen, M., Olsson, P.: Designing an efficient solution strategy for fluid flows. J. Comput. Phys. 129, 245–262 (1996) · Zbl 0899.76281 · doi:10.1006/jcph.1996.0248
[23] Yee, H.C., Vinokur, M., Djomehri, M.J.: Entropy splitting and numerical dissipation. J. Comput. Phys. 162, 33–81 (2000) · Zbl 0987.65086 · doi:10.1006/jcph.2000.6517
[24] MacCormack, R.W., Paullay, A.J.: The influence of the computational mesh on accuracy for initial value problems with discontinuous or non-unique solutions. Comput. Fluids 2, 339–361 (1974) · Zbl 0329.76067 · doi:10.1016/0045-7930(74)90024-3
[25] Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA Paper 81-1259, AIAA 14th Fluid and Plasma Dynamic Conference, Palo Alto, June 1981
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.