×

Predicting air quality: Improvements through advanced methods to integrate models and measurements. (English) Zbl 1133.62373

Summary: Air quality prediction plays an important role in the management of our environment. Computational power and efficiencies have advanced to the point where chemical transport models can predict pollution in an urban air shed with spatial resolution less than a kilometer, and cover the globe with a horizontal resolution of less than 50 km. Predicting air quality remains a challenge due to the complexity of the governing processes and the strong coupling across scales. While air quality prediction is closely aligned with weather prediction, there are important differences, including the role of pollution emissions and their associated large uncertainties. Improvements in air quality prediction require a close integration of observations. As more atmospheric chemical observations become available chemical data assimilation is expected to play an essential role in air quality forecasting. In this paper, advances in air quality forecasting are discussed with an emphasis on data assimilation. Applications of the four-dimensional variational method (4D-Var) and the ensemble Kalman filter (EnKF) approach are presented and the computation challenges are discussed.

MSC:

62P12 Applications of statistics to environmental and related topics
92D40 Ecology
62M20 Inference from stochastic processes and prediction
Full Text: DOI

References:

[1] Gems description of work: global & regional earth-system monitoring using satellite and in situ data, September 2004, Call Identifier FP6-2003-SPACE-1; OJ Reference OJ C303 of 13.12.2003.; Gems description of work: global & regional earth-system monitoring using satellite and in situ data, September 2004, Call Identifier FP6-2003-SPACE-1; OJ Reference OJ C303 of 13.12.2003.
[2] The changing atmosphere: an integrated global atmospheric chemistry observation theme for the IGOS partnership, September 2004, Report GAW No.159 (WMO TD No.1235).; The changing atmosphere: an integrated global atmospheric chemistry observation theme for the IGOS partnership, September 2004, Report GAW No.159 (WMO TD No.1235).
[3] Akella, S.; Navon, I. M., A comparative study of the performance of high resolution advection schemes in the context of data assimilation, Int. J. Numer. Methods Fluids, 51, 7, 719-748 (2006) · Zbl 1124.76036
[4] Anderson, J. L., An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 12, 2884-2903 (2001)
[5] Anderson, J. L.; Anderson, S. L., A monte carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 12, 2741-2758 (1999)
[6] Arellano, A. F.; Kasibhatla, P. S.; Giglio, L.; van der Werf, G. R.; Randerson, J. T., Top-down estimates of global CO sources using MOPITT measurements, Geophys. Res. Lett., 31, 12 (2004), Art No. L01104
[7] Babovic, T. V.; Fuhrman, D. R., Data assimilation of local model error forecasts in a deterministic model, Int. J. Numer. Methods Fluids, 39, 10, 887-918 (2002) · Zbl 1101.76374
[8] Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O’Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y., Aerosol direct radiative effects over the northwest Atlantic, northwest pacific, and north Indian oceans: estimates based on in situ chemical and optical measurements and chemical transport modeling, Atmos. Chem. Phys., 6, 1657-1732 (2006)
[9] Bergot, T., Influence of the assimilation scheme on the efficiency of adaptive observations, Quart. J. Roy. Meteor. Soc. Part B, 127, 572, 635-660 (2001)
[10] Bergot, T.; Doerenbecher, A., A study on the optimization of the deployment of targeted observations using adjoint-based methods, Quart. J. Roy. Meteor. Soc. Part A, 128, 583, 1689-1712 (2002)
[11] Bishop, C. H.; Etherton, B. J.; Majumdar, S. J., Adaptive sampling with the ensemble transform Kalman filter. part I: theoretical aspects, Mon. Weather Rev., 129, 3, 420-436 (2001)
[12] Bocquet, M., Reconstruction of an atmospheric tracer source using the principle of maximum entropy. I: theory, Quart. J. Roy. Meteor. Soc. Part B, 131, 610, 2191-2208 (2005)
[13] Bocquet, M., Reconstruction of an atmospheric tracer source using the principle of maximum entropy. II: applications, Quart. J. Roy. Meteor. Soc. Part B, 131, 610, 2209-2223 (2005)
[14] Buizza, R.; Montani, A., Targeting observations using singular vectors, J. Atmos. Sci., 56, 17, 2965-2985 (1999)
[15] Buizza, R.; Palmer, T. N., The singular-vector structure of the atmospheric global circulation, J. Atmos. Sci., 52, 9, 1434-1456 (1995)
[16] Burgers, G.; van Leeuwen, P. J.; Evensen, G., Analysis scheme in the ensemble Kalman filter, Mon. Weather Rev., 126, 6, 1719-1724 (1998)
[17] Byrd, R. H.; Lu, P. H.; Nocedal, J.; Zhu, C. Y., A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16, 5, 1190-1208 (1995) · Zbl 0836.65080
[18] Cacuci, D. G., Sensitivity theory for non-linear systems. 1. Non-linear functional-analysis approach, J. Math. Phys., 22, 12, 2794-2802 (1981)
[19] Cacuci, D. G., Sensitivity theory for non-linear systems. 2. Extensions to additional classes of responses, J. Math. Phys., 22, 12, 2803-2812 (1981)
[20] Cacuci, D. G., Sensitivity and Uncertainty Analysis (2003), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL · Zbl 1030.60001
[21] Carmichael, G. R.; Daescu, D. N.; Sandu, A.; Chai, T., Computational aspects of chemical data assimilation into atmospheric models, (Computational Science - ICCS 2003, PT. IV in Lecture Notes in Computer Science (2003), Springer-Verlag: Springer-Verlag Berlin), 269-278 · Zbl 1188.86004
[22] Carmichael, G. R.; Tang, Y.; Kurata, G.; Uno, I.; Streets, D.; Woo, J. H.; Huang, H.; Yienger, J.; Lefer, B.; Shetter, R.; Blake, D.; Atlas, E.; Fried, A.; Apel, E.; Eisele, F.; Cantrell, C.; Avery, M.; Barrick, J.; Sachse, G.; Brune, W.; Sandholm, S.; Kondo, Y.; Singh, H.; Talbot, R.; Bandy, A.; Thorton, D.; Clarke, A.; Heikes, B., Regional-scale chemical transport modeling in support of the analysis of observations obtained during the TRACE-P experiment, J. Geophys. Res., 108, D21 (2003), Art. No. 8823
[23] W.P.L. Carter, Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment, Technical Report 92-329, California Air Resources Board Contract, May 2000.; W.P.L. Carter, Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment, Technical Report 92-329, California Air Resources Board Contract, May 2000.
[24] T. Chai, G.R. Carmichael, D.N. Daescu, A. Sandu, Analysis of TRACE-P observations using a four-dimensional variational data assimilation technique, in: Preprint of 84th American Meteorological Society Annual Meeting, Seattle, WA, USA, 11-15 January 2004.; T. Chai, G.R. Carmichael, D.N. Daescu, A. Sandu, Analysis of TRACE-P observations using a four-dimensional variational data assimilation technique, in: Preprint of 84th American Meteorological Society Annual Meeting, Seattle, WA, USA, 11-15 January 2004.
[25] T. Chai, G.R. Carmichael, A. Sandu, M. Hardesty, P. Pilewskie, S. Whitlow, E.V. Browell, M.A. Avery, V. Thouret, P. Nedelec, J.T. Merrill, A.M. Thompson, Four dimensional data assimilation experiments with ICARTT (International Consortium for Atmospheric Research on Transport and Transformation) ozone measurements, J. Geophys. Res., in press, doi:10.1029/2006JD007763; T. Chai, G.R. Carmichael, A. Sandu, M. Hardesty, P. Pilewskie, S. Whitlow, E.V. Browell, M.A. Avery, V. Thouret, P. Nedelec, J.T. Merrill, A.M. Thompson, Four dimensional data assimilation experiments with ICARTT (International Consortium for Atmospheric Research on Transport and Transformation) ozone measurements, J. Geophys. Res., in press, doi:10.1029/2006JD007763
[26] Chai, T.; Carmichael, G. R.; Sandu, A.; Tang, Y. H.; Daescu, D. N., Chemical data assimilation of transport and chemical evolution over the pacific (TRACE-P) aircraft measurements, J. Geophys. Res., 111, D02301 (2006)
[27] (Chock, D. P.; Carmichael, G. R., Atmospheric Modeling (2002), Springer)
[28] Cohn, S. E., An introduction to estimation theory, J. Meteorol. Soc. Jpn., 75, 1B, 257-288 (1997)
[29] Collins, W. D.; Rasch, P. J.; Eaton, B. E.; Khattatov, B. V.; Lamarque, J. F.; Zender, C. S., Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: methodology for INDOEX, J. Geophys. Res., 106, D7, 7313-7336 (2001)
[30] Constantinescu, E. M.; Sandu, A., On adaptive mesh refinement for atmospheric pollution models, (Computational Science - ICCS 2005, Pt 2. Computational Science - ICCS 2005, Pt 2, Lecture Notes in Computer Science, vol. 3515 (2005), Springer-Verlag: Springer-Verlag Berlin), 798-805
[31] E.M. Constantinescu, A. Sandu, T. Chai, G.R. Carmichael, Autoregressive models of background errors for chemical data assimilation, J. Geophys. Res., in press.; E.M. Constantinescu, A. Sandu, T. Chai, G.R. Carmichael, Autoregressive models of background errors for chemical data assimilation, J. Geophys. Res., in press.
[32] E.M. Constantinescu, A. Sandu, T. Chai, G.R. Carmichael, Ensemble-based chemical data assimilation. I: General approach, Quart. J. Roy. Meteor. Soc., in press.; E.M. Constantinescu, A. Sandu, T. Chai, G.R. Carmichael, Ensemble-based chemical data assimilation. I: General approach, Quart. J. Roy. Meteor. Soc., in press.
[33] E.M. Constantinescu, A. Sandu, T. Chai, G.R. Carmichael, Ensemble-based chemical data assimilation. II: Covariance localization, Quart. J. Roy. Meteor. Soc., in press.; E.M. Constantinescu, A. Sandu, T. Chai, G.R. Carmichael, Ensemble-based chemical data assimilation. II: Covariance localization, Quart. J. Roy. Meteor. Soc., in press.
[34] Corazza, M.; Kalnay, E.; Patil, D., Use of the breeding technique to estimate the shape of the analysis “errors of the day”, Nonlinear Process. Geophys., 10, 233-243 (2002)
[35] Courtier, P.; Thepaut, J. N.; Hollingsworth, A., A strategy for operational implementation of 4D-Var, using an incremental approach, Quart. J. Roy. Meteor. Soc., 120, 519, 1367-1387 (1994)
[36] Dabberdt, W. F.; Carroll, M. A.; Baumgardner, D.; Carmichael, G.; Cohen, R.; Dye, T.; Ellis, J.; Grell, G.; Grimmond, S.; Hanna, S.; Irwin, J.; Lamb, B.; Madronich, S.; McQueen, J.; Meagher, J.; Odman, T.; Pleim, J.; Schmid, H. P.; Westphal, D. L., Meteorological research needs for improved air quality forecasting - Report of the 11th prospectus development team of the US weather research program, Bull. Amer. Meteorol. Soc., 85, 4, 563 (2004)
[37] Daescu, D. N.; Carmichael, G. R., An adjoint sensitivity method for the adaptive location of the observations in air quality modeling, J. Atmos. Sci., 60, 2, 434-450 (2003)
[38] D.N. Daescu, I.M. Navon, A dual-weighted approach to order reduction in 4D-Var data assimilation, Mon. Weather Rev., in review.; D.N. Daescu, I.M. Navon, A dual-weighted approach to order reduction in 4D-Var data assimilation, Mon. Weather Rev., in review. · Zbl 1370.76122
[39] Daescu, D. N.; Navon, I. M., Efficiency of a pod-based reduced second-order adjoint model in 4D-Var data assimilation, Int. J. Numer. Methods Fluids., 53, 6, 985-1004 (2007) · Zbl 1370.76122
[40] Daescu, D. N.; Navon, I. M., Adaptive observations in the context of 4D-Var data assimilation, Meteorol. Atmos. Phys., 85, 4, 205-226 (2004)
[41] Daley, R., Estimating model-error covariances for application to atmospheric data assimilation, Mon. Weather Rev., 120, 8, 1735-1746 (1992)
[42] Damian, V.; Sandu, A.; Damian, M.; Potra, F.; Carmichael, G. R., The kinetic preprocessor KPP - a software environment for solving chemical kinetics, Comput. Chem. Eng., 26, 11, 1567-1579 (2002)
[43] Delle Monache, L.; Stull, R. B., An ensemble air-quality forecast over western Europe during an ozone episode, Atmos. Environ., 37, 25, 3469-3474 (2003)
[44] Derber, J.; Bouttier, F., A reformulation of the background error covariance in the ECMWF global data assimilation system, Tellus Series - Dyn. Meteorol. Oceanogr., 51, 2, 195-221 (1999)
[45] Dunker, A. M., Decoupled direct method for calculating sensitivity coefficients in chemical kinetics, J. Chem. Phys., 81, 2385-2393 (1984)
[46] Elbern, H.; Schmidt, H., A 4D-Var chemistry data assimilation scheme for Eulerian chemistry transport modeling, J. Geophys. Res., 104, D15, 18583-18598 (1999)
[47] Elbern, H.; Schmidt, H., Ozone episode analysis by four-dimensional variational chemistry data assimilation, J. Geophys. Res., 106, D4, 3569-3590 (2001)
[48] Elbern, H.; Schmidt, H.; Ebel, A., Implementation of a parallel 4D-Var chemistry data assimilation scheme, Environ. Manage. Health, 10, 236-244 (1999)
[49] Elbern, H.; Schmidt, H.; Talagrand, O.; Ebel, A., 4D-variational data assimilation with an adjoint air quality model for emission analysis, Environ. Model. Software, 15, 539-548 (2000)
[50] Evensen, G., Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model, J. Geophys. Res., 97, C11, 17905-17924 (1992)
[51] Evensen, G., Open boundary-conditions for the extended Kalman filter with a quasi-geostrophic ocean model, J. Geophys. Res., 98, C9, 16529-16546 (1993)
[52] Evensen, G., Sequential data assimilation with a nonlinear quasi-geostrophic model using monte-carlo methods to forecast error statistics, J. Geophys. Res., 99, C5, 10143-10162 (1994)
[53] Evensen, G., The ensemble Kalman filter: theoretical formulation and practical implementation, Ocean Dyn., 53, 4, 343-367 (2003)
[54] Evensen, G.; van Leeuwen, P. J., An ensemble Kalman smoother for nonlinear dynamics, Mon. Weather Rev., 128, 6, 1852-1867 (2000)
[55] M. Fisher, Background error covariance modelling, in: Proceedings of the ECMWF Workshop on Recent Developments in Data Assimilation for Atmosphere and Ocean, Reading, UK, 8-12 September 2003.; M. Fisher, Background error covariance modelling, in: Proceedings of the ECMWF Workshop on Recent Developments in Data Assimilation for Atmosphere and Ocean, Reading, UK, 8-12 September 2003.
[56] Fisher, M.; Lary, D. J., Lagrangian 4-dimensional variational data assimilation of chemical-species, Quart. J. Roy. Meteor. Soc. Part A, 121, 527, 1681-1704 (1995)
[57] Gelaro, R.; Buizza, R.; Palmer, T. N.; Klinker, E., Sensitivity analysis of forecast errors and the construction of optimal perturbations using singular vectors, J. Atmos. Sci., 55, 6, 1012-1037 (1998)
[58] Grell, G. A.; Peckham, S. E.; Schmitz, R.; McKeen, S. A.; Frost, G.; Skamarock, W. C.; Eder, B.; Petron, G.; Granier, C.; Khattatov, B.; Yudin, V.; Lamarque, J. F.; Emmons, L.; Gille, J.; Edwards, D. P., Fully coupled “online” chemistry within the WRF model, Geophys. Res. Lett., 39, 37, 6957-6975 (2005)
[59] Hakami, A.; Henze, D. K.; Seinfeld, J. H.; Chai, T.; Tang, Y.; Carmichael, G. R.; Sandu, A., Adjoint inverse modeling of black carbon during the Asian pacific regional aerosol characterization experiment, J. Geophys. Res., 110, D14 (2005), Art. No. D14301
[60] Hamill, T. M.; Whitaker, J. S.; Snyder, C., Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter, Mon. Weather Rev., 129, 11, 2776-2790 (2001)
[61] Hansen, J. A., Accounting for model error in ensemble-based state estimation and forecasting, Mon. Weather Rev., 130, 10, 2373-2391 (2002)
[62] Hansen, J. A.; Smith, L. A., Probabilistic noise reduction, Tellus Series - Dyn. Meteorol. Oceanogr., 53, 5, 585-598 (2001)
[63] Henze, D. K.; Seinfeld, J. H., Development of the adjoint of geos-chem, Atmos. Chem. Phys. Discuss., 6, 10591-10648 (2006)
[64] Henze, D. K.; Seinfeld, J. H.; Liao, W.; Sandu, A.; Carmichael, G. R., Inverse modeling of aerosol dynamics: condensational growth, J. Geophys. Res., 109, D14, D14201 (2004)
[65] Herschel, L. M.; Houtekamer, P. L., Ensemble size, balance, and model-error representation in ENKF, Mon. Weather Rev., 125, 2416-2426 (2002)
[66] Houtekamer, P. L.; Lefaivre, L., Using ensemble forecasts for model validation, Mon. Weather Rev., 125, 10, 2416-2426 (1997)
[67] Houtekamer, P. L.; Mitchell, H. L., Data assimilation using an ensemble Kalman filter technique, Mon. Weather Rev., 126, 3, 796-811 (1998)
[68] Houtekamer, P. L.; Mitchell, H. L., A sequential ensemble Kalman filter for atmospheric data assimilation, Mon. Weather Rev., 129, 1, 123-137 (2001)
[69] Hunt, B. R.; Kalnay, E.; Kostelich, E. J.; Ott, E.; Patil, D. J.; Sauer, T.; Szunyogh, I.; Yorke, J. A.; Zimin, A. V., Four-dimensional ensemble Kalman filtering, Tellus Series - Dyn. Meteorol. Oceanogr., 56, 4, 273-277 (2004)
[70] Jacob, D. J.; Crawford, J. H.; Kleb, M. M.; Connors, V. S.; Bendura, R. J.; Raper, J. L.; Sachse, G. W.; Gille, J. C.; Emmons, L.; Heald, C. L., Transport and chemical evolution over the pacific (TRACE-P) aircraft mission: design, execution, and first results, J. Geophys. Res., 108, D20, 1-19 (2003)
[71] Jenkin, M. E.; Saunders, S. M.; Pilling, M. J., The tropospheric degradation of volatile organic compounds: a protocol for mechanism development, Atmos. Environ., 31, 81-104 (1997)
[72] Kalman, R. E., A new approach to linear filtering and prediction problems, Trans. ASME, Ser. D: J. Basic Eng., 82, 35-45 (1960)
[73] Kalnay, E., Atmospheric Modeling, Data Assimilation, and Predictability (2003), Cambridge University Press: Cambridge University Press Cambridge, UK; New York
[74] Kiley, C. M.; Fuelberg, H. E.; Palmer, P. I.; Allen, D. J.; Carmichael, G. R.; Jacob, D. J.; Mari, C.; Pierce, R. B.; Pickering, K. E.; Tang, Y. H.; Wild, O.; Fairlie, T. D.; Logan, J. A.; Sachse, G. W.; Shaack, T. K.; Streets, D. G., An intercomparison and evaluation of aircraft-derived and simulated CO from seven chemical transport models during the TRACE-P experiment, J. Geophys. Res., 108, D21 (2003), Art. No. 8819
[75] Krutikov, V. N.; Sapritsky, V. I.; Khlevnoy, B. B.; Lisiansky, B. E.; Morozova, S. P.; Ogarev, S. A.; Panfilov, A. S.; Sakharov, M. K.; Samoylov, M. L.; Bingham, G.; Humpherys, T.; Thurgood, A.; Privalsky, V. E., The global earth observation system of systems (GEOSS) and metrological support for measuring radiometric properties of objects of observations, Metrologia, 43, 2, S94-S97 (2006)
[76] E. Kucukkaraca, M. Fisher, Use of analysis ensembles in estimating flow-dependent background error variances, ECMWF technical memorandum 492, The European Centre for Medium-Range Weather Forecasts, January 2006.; E. Kucukkaraca, M. Fisher, Use of analysis ensembles in estimating flow-dependent background error variances, ECMWF technical memorandum 492, The European Centre for Medium-Range Weather Forecasts, January 2006.
[77] Langland, R. H.; Baker, A. L., Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system, Tellus Series - Dyn. Meteorol. Oceanogr., 56, 3, 189-201 (2004)
[78] Langland, R. H.; Toth, Z.; Gelaro, R.; Szunyogh, I.; Shapiro, M. A.; Majumdar, S. J.; Morss, R. E.; Rohaly, G. D.; Velden, C.; Bond, N.; Bishop, C. H., The north Pacific experiment (NORPEX-98): targeted observations for improved North American weather forecasts, Bull. Amer. Meteorol. Soc., 80, 7, 1363-1384 (1999)
[79] Lawrence, M. G.; Rasch, P. J.; von Kuhlmann, R.; Williams, J.; Fischer, H.; de Reus, M.; Lelieveld, J.; Crutzen, P. J.; Schultz, M.; Stier, P.; Huntrieser, H.; Heland, J.; Stohl, A.; Forster, C.; Elbern, H.; Jakobs, H.; Dickerson, R. R., Global chemical weather forecasts for field campaign planning: predictions and observations of large-scale features during minos, contrace, and indoex, Atmos. Chem. Phys., 3, 267-289 (2003)
[80] Le Dimet, F.-X.; Navon, I. M.; Daescu, D. N., Second-order information in data assimilation, Mon. Weather Rev., 130, 3, 629-648 (2002)
[81] Le Dimet, F. X.; Talagrand, O., Variational algorithms for analysis and assimilation of meteorological observations – theoretical aspects, Tellus Series - Dyn. Meteorol. Oceanogr., 38, 2, 97-110 (1986)
[82] Lee, A. M.; Carver, G. D.; Chipperfield, M. P.; Pyle, J. A., Three-dimensional chemical forecasting: a methodology, J. Geophys. Res., 102, D3, 3905-3919 (1997)
[83] Leutbecher, M., A reduced rank estimate of forecast error variance changes due to intermittent modifications of the observing network, J. Atmos. Sci., 60, 5, 729-742 (2003)
[84] Liao, W. Y.; Sandu, A., Total energy singular vectors for atmospheric chemical transport models, (Computational Science - ICCS 2005. Computational Science - ICCS 2005, no. II in Lecture Notes in Computer Science, vol. 3515 (2005), Springer-Verlag: Springer-Verlag Berlin), 806-813
[85] W.Y. Liao, A. Sandu, G.R. Carmichael, T. Chai, Singular vector analysis for atmospheric chemical transport models, Mon. Weather Rev., in press.; W.Y. Liao, A. Sandu, G.R. Carmichael, T. Chai, Singular vector analysis for atmospheric chemical transport models, Mon. Weather Rev., in press.
[86] Liu, Z.; Sandu, A., Analysis of discrete adjoints for upwind numerical schemes, (Computational Science - ICCS 2005, Pt 2. Computational Science - ICCS 2005, Pt 2, Lecture Notes in Computer Science, vol. 3515 (2005), Springer-Verlag: Springer-Verlag Berlin), 829-836 · Zbl 1128.86303
[87] Lorenc, A. C., Analysis-methods for numerical weather prediction, Quart. J. Roy. Meteor. Soc., 112, 474, 1177-1194 (1986)
[88] Lorenz, E. N.; Emanuel, K. A., Optimal sites for supplementary weather observations: simulation with a small model, J. Atmos. Sci., 55, 3, 399-414 (1998)
[89] Løvås, T.; Mastorakos, E.; Goussis, D. A., Reduction of the RACM scheme using computational singular perturbation analysis, J. Geophys. Res., 111, D13302 (2006)
[90] Majumdar, S. J.; Bishop, C. H.; Buizza, R.; Gelaro, R., A comparison of ensemble-transform Kalman-filter targeting guidance with ECMWF and NRL total-energy singular-vector guidance, Quart. J. Roy. Meteor. Soc., 128, 585, 2527-2549 (2002)
[91] Mallet, V.; Sportisse, B., Ensemble-based air quality forecasts: a multimodel approach applied to ozone, J. Geophys. Res., 111, D18302 (2006)
[92] Marchuk, G. I., Adjoint Equations and Analysis of Complex Systems (1995), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, Boston · Zbl 0817.34002
[93] S.A. McKeen, S.H. Chung, J. Wilczak, G. Grell, I. Djalalova, S. Peckham, W. Gong, V. Bouchet, R. Moffet, Y. Tang, G.R. Carmichael, R. Mathur, S. Yu, The evaluation of several pm2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field study, J. Geophys. Res. 112 (2007) Art. No. D10S20, doi:10.1029/2006JD007608; S.A. McKeen, S.H. Chung, J. Wilczak, G. Grell, I. Djalalova, S. Peckham, W. Gong, V. Bouchet, R. Moffet, Y. Tang, G.R. Carmichael, R. Mathur, S. Yu, The evaluation of several pm2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field study, J. Geophys. Res. 112 (2007) Art. No. D10S20, doi:10.1029/2006JD007608
[94] S.A. McKeen, J. Wilczak, G. Grell, I. Djalalova, S. Peckham, E. Hsie, W. Gong, V. Bouchet, S. Menard, R. Moffet, J. McHenry, J. McQueen, Y. Tang, G.R. Carmichael, M. Pagowski, A. Chan, T. Dye, G. Frost, P. Lee, R. Mathur, Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004, J. Geophys. Res. 110 (D21) (2005) Art. No. D21307.; S.A. McKeen, J. Wilczak, G. Grell, I. Djalalova, S. Peckham, E. Hsie, W. Gong, V. Bouchet, S. Menard, R. Moffet, J. McHenry, J. McQueen, Y. Tang, G.R. Carmichael, M. Pagowski, A. Chan, T. Dye, G. Frost, P. Lee, R. Mathur, Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004, J. Geophys. Res. 110 (D21) (2005) Art. No. D21307.
[95] Meng, Z.; Dabdub, D.; Seinfeld, J. H., Size-resolved and chemically resolved model of atmospheric aerosol dynamics, J. Geophys. Res., 103, D3, 3419-3436 (1998)
[96] Menut, L.; Vautard, R.; Beekmann, M.; Honore, C., Sensitivity of photochemical pollution using the adjoint of a simplified chemistry-transport model, J. Geophys. Res., 105, D12, 15379-15402 (2000)
[97] Miehe, P.; Sandu, A.; Carmichael, G. R.; Tang, Y. H.; Daescu, D., A communication library for the parallelization of air quality models on structured grids, Atmos. Environ., 36, 24, 3917-3930 (2002)
[98] Morss, R. E.; Emanuel, K. A.; Snyder, C., Idealized adaptive observation strategies for improving numerical weather prediction, J. Atmos. Sci., 58, 2, 210-232 (2001)
[99] Navon, I. M., Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography, Dyn. Atmosph. Oceans, 27, 1-4, 55-79 (1998)
[100] Pétron, G.; Granier, C.; Khattatov, B.; Yudin, V.; Lamarque, J. F.; Emmons, L.; Gille, J.; Edwards, D. P., Monthly CO surface sources inventory based on the 2000-2001 MOPITT satellite data, Geophys. Res. Lett., 31, 21 (2004), Art. No. L21107
[101] Pagowski, M.; Grell, G. A.; McKeen, S. A.; Dèvènyi, D.; Wilczak, J. M.; Bouchet, V.; Gong, W.; McHenry, J.; Peckham, S.; McQueen, J.; Moffet, R.; Tang, Y., A simple method to improve ensemble-based ozone forecasts, Geophys. Res. Lett., 32, L07814 (2005)
[102] Palmer, P. I.; Jacob, D. J.; Jones, D. B.A.; Heald, C. L.; Yantosca, R. M.; Logan, J. A.; Sachse, G. W.; Streets, D. G., Inverting for emissions of carbon monoxide from Asia using aircraft observations over the western Pacific, J. Geophys. Res., 108, D21 (2003), Art. No. 8828
[103] Pan, L.; Chai, T.; Carmichael, G. R.; Tang, Y.; Streets, D.; Woo, J.; Friedli, H. R.; Radke, L. F., Top-down estimate of mercury emissions in China using four-dimensional variational data assimilation (4D-Var), Atmos. Environ., 41, 13, 2804-2819 (2007)
[104] Parrish, D. F.; Derber, J. C., The national-meteorological-centers spectral statistical-interpolation analysis system, Mon. Weather Rev., 120, 8, 1747-1763 (1992)
[105] Pham, D. T., Stochastic methods for sequential data assimilation in strongly nonlinear systems, Mon. Weather Rev., 129, 5, 1194-1207 (2001)
[106] Rabier, E.; Jarvinen, H.; Klinker, E.; Mahfouf, J. F.; Simmons, A., The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics, Quart. J. Roy. Meteor. Soc., 126, 564, 1143-1170 (2000)
[107] Rabier, F.; Klinker, E.; Courtier, P.; Hollingsworth, A., Sensitivity of forecast errors to initial conditions, Quart. J. Roy. Meteor. Soc., 122, 529, 121-150 (1996)
[108] Rasch, P. J.; Collins, W. D.; Eaton, B. E., Understanding the Indian ocean experiment (INDOEX) aerosol distributions with an aerosol assimilation, J. Geophys. Res., 106, D7, 7337-7355 (2001)
[109] Sandu, A., A newton-cotes quadrature approach for solving the aerosol coagulation equation, Atmos. Environ., 36, 3, 583-589 (2002)
[110] Sandu, A., Piecewise polynomial solutions of aerosol dynamic equation, Aerosol Sci. Technol., 40, 4, 261-273 (2006)
[111] Sandu, A.; Borden, C., A framework for the numerical treatment of aerosol dynamics, Appl. Numer. Math., 45, 4, 475-497 (2003) · Zbl 1022.76040
[112] Sandu, A.; Constantinescu, E. M.; Liao, W. Y.; Carmichael, G. R.; Chai, T. F.; Seinfeld, J. H.; Daescu, D., Ensemble-based data assimilation for atmospheric chemical transport models, (Computational Science - ICCS 2005, Pt 2. Computational Science - ICCS 2005, Pt 2, Lecture Notes in Computer Science, vol. 3515 (2005), Springer-Verlag: Springer-Verlag Berlin), 648-655
[113] Sandu, A.; Daescu, D. N.; Carmichael, G. R., Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: Part I - theory and software tools, Atmos. Environ., 37, 36, 5083-5096 (2003)
[114] Sandu, A.; Daescu, D. N.; Carmichael, G. R.; Chai, T. F., Adjoint sensitivity analysis of regional air quality models, J. Comput. Phys., 204, 1, 222-252 (2005) · Zbl 1061.92061
[115] Sandu, A.; Liao, W.; Carmichael, G. R.; Henze, D. K.; Seinfeld, J. H., Inverse modeling of aerosol dynamics using adjoints: theoretical and numerical considerations, Aerosol Sci. Technol., 39, 8, 677-694 (2005)
[116] Sandu, A.; Sander, R., Technical note: simulating chemical systems in fortran90 and matlab with the kinetic preprocessor KPP-2.1, Atmos. Chem. Phys., 6, 187-195 (2006)
[117] Schubert, S.; Chang, Y. H., An objective method for inferring sources of model error, Mon. Weather Rev., 124, 2, 325-340 (1996)
[118] Singh, H. B.; Brune, W. H.; Crawford, J. H.; Jacob, D. J.; Russell, P. B., Overview of the summer 2004 Intercontinental Chemical Transport Experiment-North America (INTEX-A), J. Geophys. Res., 111, D24, D24S01 (2006)
[119] Streets, D. G.; Zhang, Q.; Wang, L.; He, K.; Hao, J.; Wu, Y.; Tang, Y.; Carmichael, G., Revisting China’s CO emissions after transport chemical evolution over the pacific (TRACE-P): synthesis of inventories atmospheric modeling and observations, J. Geophys. Res., 111, D14 (2006), Art No. D14306
[120] Talagrand, O.; Courtier, P., Variational assimilation of meteorological observations with the adjoint vorticity equation. 1. Theory, Quart. J. Roy. Meteor. Soc., 113, 478, 1311-1328 (1987)
[121] Y.H. Tang, G.R. Carmichael, N. Thongboonchoo, T. Chai, L.W. Horowitz, R.B. Pierce, J.A. Al-Saadi, G. Pfister, M. Vukovich, M.A. Avery, G.W. Sachse, T.B. Ryerson, J.S. Holloway, E.L. Atlas, F.M. Flocke, R.J. Weber, L.G. Huey, J.E. Dibb, D.G. Streets, W.H. Brune, The influence of lateral and top boundary conditions on regional air quality prediction: a multi-scale study coupling regional and global chemical transport models, J. Geophys. Res., in press, doi:10.1029/2006JD007515; Y.H. Tang, G.R. Carmichael, N. Thongboonchoo, T. Chai, L.W. Horowitz, R.B. Pierce, J.A. Al-Saadi, G. Pfister, M. Vukovich, M.A. Avery, G.W. Sachse, T.B. Ryerson, J.S. Holloway, E.L. Atlas, F.M. Flocke, R.J. Weber, L.G. Huey, J.E. Dibb, D.G. Streets, W.H. Brune, The influence of lateral and top boundary conditions on regional air quality prediction: a multi-scale study coupling regional and global chemical transport models, J. Geophys. Res., in press, doi:10.1029/2006JD007515
[122] Thuburn, J.; Haine, T. W.N., Adjoints of nonoscillatory advection schemes, J. Comput. Phys., 171, 2, 616-631 (2001) · Zbl 0990.65093
[123] Vukicevic, T.; Steyskal, M.; Hecht, M., Properties of advection algorithms in the context of variational data assimilation, Mon. Weather Rev., 129, 5, 1221-1231 (2001)
[124] Weaver, A.; Courtier, P., Correlation modelling on the sphere using a generalized diffusion equation, Quart. J. Roy. Meteor. Soc., 127, 575, 1815-1846 (2001)
[125] Whitehouse, L. E.; Tomlin, A. S.; Pilling, M. J., Systematic reduction of complex tropospheric chemical mechanisms, Part II: lumping using a time-scale based approach, Atmos. Chem. Phys., 4, 7, 2057-2081 (2004)
[126] Wilczak, J.; McKeen, S.; Djalalova, I.; Grell, G.; Peckham, S.; Gong, W.; Bouchet, V.; Moffet, R.; McHenry, J.; McQueen, J.; Lee, P.; Tang, Y.; Carmichael, G. R., Bias-corrected ensemble and probabilistic forecasts of surface ozone over eastern North America during the summer of 2004, J. Geophys. Res., 111, D23S28 (2006)
[127] Zhu, C.; Byrd, R. H.; Nocedal, J., L-BFGS-B-fortran routines for large scale bound constrained optimization, ACM Trans. Math. Software, 23, 4, 550-560 (1997) · Zbl 0912.65057
[128] (Zlatev, Z., Computer Treatment of Large Air Pollution Models (1995), Kluwer Academic Publishers)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.