×

Autoregressive approximation in nonstandard situations: the fractionally integrated and non-invertible cases. (English) Zbl 1133.62352

Summary: Autoregressive models are commonly employed to analyze empirical time series. In practice, however, any autoregressive model will only be an approximation to reality and in order to achieve a reasonable approximation and allow for full generality the order of the autoregression, \(h\) say, must be allowed to go to infinity with T, the sample size. Although results are available on the estimation of autoregressive models when \(h\) increases indefinitely with \(T\) such results are usually predicated on assumptions that exclude (1) non-invertible processes and (2) fractionally integrated processes.
We investigate the consequences of fitting long autoregressions under regularity conditions that allow for these two situations and where an infinite autoregressive representation of the process need not exist. Uniform convergence rates for the sample autocovariances are derived and corresponding convergence rates for the estimates of AR\((h)\) approximations are established. A central limit theorem for the coefficient estimates is also obtained. An extension of a result on the predictive optimality of AIC to fractional and non-invertible processes is obtained.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62F12 Asymptotic properties of parametric estimators
60F05 Central limit and other weak theorems

Software:

KernSmooth
Full Text: DOI

References:

[1] Akaike H. (1969). Fitting autoregressive models for prediction. Annals of Institute of Statistical Mathematics. 21, 243–247 · Zbl 0202.17301 · doi:10.1007/BF02532251
[2] Akaike H. (1970). Statistical predictor identification. Annals of Institute of Statistical Mathematics. 22, 203–217 · Zbl 0259.62076 · doi:10.1007/BF02506337
[3] Anderson T.W. (1971). The statistical analysis of time series. New York, Wiley · Zbl 0225.62108
[4] Baillie R.T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics. 73, 5–59 · Zbl 0854.62099 · doi:10.1016/0304-4076(95)01732-1
[5] Baxter G. (1962). An asymptotic result for the finite predictor. Mathematica Scandinavica. 10, 137–144 · Zbl 0112.09401
[6] Beran J. (1992). Statistical methods for data with long-range dependence. Statistical Science. 7, 404–427 · doi:10.1214/ss/1177011122
[7] Beran J. (1994). Statistics for long memory processes. New York, Chapman and Hall · Zbl 0869.60045
[8] Beran J., Bhansali R.J., Ocker D. (1998). On unified model selection for stationary and nonstationary short- and long-memory autoregressive processes. Biometrika. 85, 921–934 · Zbl 1054.62581 · doi:10.1093/biomet/85.4.921
[9] Burg J. (1968). A new analysis technique for time series data. Technical report, Advanced Study Institute on Signal Processing, N.A.T.O., Enschede, Netherlands
[10] Davies R.B., Harte D.S. (1987). Tests for hurst effect. Biometrika. 74, 95–101 · Zbl 0612.62123 · doi:10.1093/biomet/74.1.95
[11] Durbin J. (1960). The fitting of time series models. Review of International Statistical Institute. 28, 233–244 · Zbl 0101.35604 · doi:10.2307/1401322
[12] Granger C.W.J., Joyeux R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis. 1, 15–29 · Zbl 0503.62079 · doi:10.1111/j.1467-9892.1980.tb00297.x
[13] Grey H.L., Zhang N.-F., Woodward W.A. (1989). On generalized fractional processes. Journal of Time Series Analysis. 10, 233–257 · Zbl 0685.62075 · doi:10.1111/j.1467-9892.1989.tb00026.x
[14] Grose S., Poskitt D.S. (2005). Empirical evidence on nonstandard autogregressive approximations. Working Paper, Monash University
[15] Hannan E.J., Deistler M. (1988). The statistical theory of linear systems. New York, Wiley · Zbl 0641.93002
[16] Hannan E.J., Quinn B.G. (1979). The determination of the order of an autoregression. Journal of Royal Statistical Society, B 41, 190–195 · Zbl 0408.62076
[17] Hosking J.R.M. (1980). Fractional differencing. Biometrika. 68, 165–176 · Zbl 0464.62088 · doi:10.1093/biomet/68.1.165
[18] Hosking J.R.M. (1996). Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long memory time series. Journal of Econometrics. 73, 261–284 · Zbl 0854.62084 · doi:10.1016/0304-4076(95)01740-2
[19] Kolmorgorov A.N. (1941). Interpolation und extrapolation von stationaren zufalligen folgen.Bulletin Academy Science U. S. S. R., Mathematics Series. 5, 3–14
[20] Levinson N. (1947). The Wiener RMS (root mean square) error criterion in filter design and prediction. Journal of Mathematical Physics. 25, 261–278
[21] Lysne D., Tjøstheim D. (1987). Loss of spectral peaks in autoregressive spectral estimation. Biometrika. 74, 200–206 · Zbl 0607.62114 · doi:10.1093/biomet/74.1.200
[22] Mallows C.L. (1973). Some comments on C p . Technometrics 15, 661–675 · Zbl 0269.62061 · doi:10.2307/1267380
[23] Parzen E. (1974). Some recent advances in time series modelling. IEEE Transactions on Automatic Control. AC-19, 723–730 · Zbl 0317.62063 · doi:10.1109/TAC.1974.1100733
[24] Paulsen J., Tjøstheim D. (1985). On the estimation of residual variance and order in autoregressive time series. Journal of the Royal Statistical Society. B-47, 216–228 · Zbl 0568.62083
[25] Poskitt D.S. (2000). Strongly consistent determination of cointegrating rank via canonical correlations. Journal of Business and Economic Statistics. 18, 71–90 · doi:10.2307/1392138
[26] Schwarz G. (1978). Estimating the dimension of a model. Annals of Statistics. 6, 461–464 · Zbl 0379.62005 · doi:10.1214/aos/1176344136
[27] Shibata R. (1980). Asymptotically efficient selection of the order of the model for estimating parameters of a linear process. Annals of Statistics. 8, 147–164 · Zbl 0425.62069 · doi:10.1214/aos/1176344897
[28] Szegö, G. (1939). Orthogonal polynomials. American Mathematical Society Colloquium Publication. · JFM 65.0278.03
[29] Tjøstheim D., Paulsen J. (1983). Bias of some commonly-used time series estimators. Biometrika. 70, 389–400 · Zbl 0525.62085
[30] Wand M.P., Jones M.C. (1995). Kernel smoothing. London, Chapman and Hall · Zbl 0854.62043
[31] Wold H.(1938). The analysis of stationary time series (2nd ed). Uppsala, Almquist and Wicksell · JFM 64.1200.02
[32] Yule G.U. (1921). On the time correlation problem. Journal of the Royal Statistical Society, 84, 497–510 · doi:10.2307/2341101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.