×

A convex-analytical approach to extension results for \(n\)-cyclically monotone operators. (English) Zbl 1133.47037

Let \((X, \langle \cdot, \cdot \rangle)\) be a real Hilbert space. A subset \(G\) of \(X\times X\) is said to be \(n\)-monotone if \((a_1, a_1^*),\dots, (a_{n},a_{n}^*) \in G\Rightarrow \sum_{i=1}^{n} \langle a_{i+1}-a_i,a_i^* \rangle \leq 0\), where \(a_{n+1}=a_1\). A multivalued operator \(A:X\rightarrow 2^X\) is called \(n\)-monotone if its graph is \(n\)-monotone. The function \(F_{A,n}:X\times X\rightarrow [-\infty, +\infty]\), defined by \(F_{A,n}(x,x^*)= \sup\{\sum_{i=1}^{n-2} \langle a_{i+1}-a_i,a_i^* \rangle +\langle x-a_{n-1}, a_{n-1}^*\rangle+\langle a_1,x^*\rangle: (a_i,a_i^*)\in \operatorname{Gr} A\), \(1\leq i\leq n-1 \}\), is called the Fitzpatrick function of order \(n\) associated to the multivalued operator \(A\). For \(f:X\times X\rightarrow [-\infty, +\infty]\), let \(f^*\) be the Fenchel conjugate of \(f\). The authors prove the following result: If \(A:X\rightarrow 2^X\) is an \(n\)-monotone multivalued operator, with nonempty graph, satisfying \(\langle a, a^*\rangle \leq F_{A,n}^* (a, a^*)\) for all \((a, a^*)\in X\times X\), then for each \(w\in X\) there exists \(x\in \overline{\operatorname{conv}} \operatorname{dom} A\) such that \(\{(x, w-x)\}\cup \operatorname{Gr} A\) is \(n\)-monotone. This result provides a new proof, more elementary and rooted in convex analysis, for Theorem 3.1 in [M. D. Voisei, Stud. Cercet. Ştiinţ., Ser. Mat., Univ. Bacău 9, 235–242 (1999; Zbl 1055.47510)].

MSC:

47H05 Monotone operators and generalizations
90C25 Convex programming

Citations:

Zbl 1055.47510
Full Text: DOI

References:

[1] Bartz, S., Bauschke, H.H., Borwein, J.M., Reich, S., Wang, X.: Fitzpatrick functions, cyclic monotonicity, and Rockafellar’s antiderivative. Nonlinear Anal. (in press) · Zbl 1119.47050
[2] Bauschke, H.H.: Fenchel duality, Fitzpatrick functions and the extension of firmly nonexpansive mappings. Proc. Amer. Math. Soc. 135, 135–139 (2007) · Zbl 1181.49017 · doi:10.1090/S0002-9939-06-08770-3
[3] Bauschke, H.H., Borwein, J.M., Wang, X.: Fitzpatrick functions and continuous linear monotone operators. SIAM J. Optim. (to appear) · Zbl 1157.47034
[4] Bauschke, H.H., McLaren, D.A., Sendov, H.S.: Fitzpatrick functions: inequalities, examples and remarks on a problem by S. Fitzpatrick. J. Convex Anal. (in press) · Zbl 1117.26011
[5] Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. (in press) · Zbl 1111.47042
[6] Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, Berlin Heidelberg New York (2005) · Zbl 1076.49001
[7] Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North Holland, Amsterdam, The Netherlands (1973) · Zbl 0252.47055
[8] Burachik, R.S., Fitzpatrick, S.: On the Fitzpatrick family associated to some subdifferentials. J. Nonlinear Convex Anal. 6, 165–171 (2005) · Zbl 1076.46056
[9] Burachik, R.S., Svaiter, B.F.: Maximal monotone operators, convex functions and a special family of enlargements. Set-Valued Anal. 10, 297–316 (2002) · Zbl 1033.47036 · doi:10.1023/A:1020639314056
[10] Burachik, R.S., Svaiter, B.F.: Maximal monotonicity, conjugation and the duality product. Proc. Amer. Math. Soc. 131, 2379–2383 (2003) · Zbl 1019.47038 · doi:10.1090/S0002-9939-03-07053-9
[11] Debrunner, H., Flor, P.: Ein Erweiterungssatz für monotone Mengen. Arch. Math. 15, 445–447 (1964) · Zbl 0129.09203 · doi:10.1007/BF01589229
[12] Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988). In: Proceedings of the Centre for Mathematical Analysis, vol. 20, pp. 59–65. Australian National University, Canberra, Australia (1988) · Zbl 0669.47029
[13] García, Y., Lassonde, M., Revalski, J.P.: Extended sums and extended compositions of monotone operators. J. Convex Anal. (in press) · Zbl 1119.47052
[14] Holmes, R.B.: Geometric Functional Analysis and Its Applications. Springer, Berlin Heidelberg New York (1975) · Zbl 0336.46001
[15] Martínez-Legaz, J.-E., Svaiter, B.F.: Monotone operators representable by l.s.c. convex functions. Set.-Valued Anal. 13, 21–46 (2005) · Zbl 1083.47036 · doi:10.1007/s11228-004-4170-4
[16] Martínez-Legaz, J.-E., Théra, M.: A convex representation of maximal monotone operators. J. Nonlinear Convex Anal. 2, 243–247 (2001) · Zbl 0999.47037
[17] Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962) · Zbl 0111.31202 · doi:10.1215/S0012-7094-62-02933-2
[18] Penot, J.P.: The relevance of convex analysis for the study of monotonicity. Nonlinear Anal. 58, 855–871 (2004) · Zbl 1078.47008 · doi:10.1016/j.na.2004.05.018
[19] Reich, S., Simons, S.: Fenchel duality, Fitzpatrick functions and the Kirszbraun–Valentine extension theorem. Proc. Amer. Math. Soc. 133, 2657–2660 (2005) · Zbl 1075.46020 · doi:10.1090/S0002-9939-05-07983-9
[20] Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970) · Zbl 0193.18401
[21] Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin Heidelberg New York (1998)
[22] Simons, S.: Minimax and Monotonicity. Lecture Notes in Mathematics, vol. 1693. Springer, Berlin Heidelberg New York (1998) · Zbl 0917.47046
[23] Simons, S., Zălinescu, C.: A new proof for Rockafellar’s characterization of maximal monotone operators. Proc. Amer. Math. Soc. 132, 2969–2972 (2004) · Zbl 1062.47048 · doi:10.1090/S0002-9939-04-07462-3
[24] Simons, S., Zălinescu, C.: Fenchel duality, Fitzpatrick functions and maximal monotonicity. J. Nonlinear Convex Anal. 6, 1–22 (2005) · Zbl 1073.47051
[25] Voisei, M.D.: Extension theorems for k-monotone operators. Stud. Cercet. Stiinţ. - Univ. Bacaū, Ser. Mat. 9, 35–242 (1999) · Zbl 1055.47510
[26] Voisei, M.D.: A maximality theorem for the sum of maximal monotone operators in non-reflexive Banach spaces. Math. Sci. Res. J. 10, 36–41 (2006) · Zbl 1113.47039
[27] Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002) · Zbl 1023.46003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.