×

Arriving on time. (English) Zbl 1130.90410

Summary: This research proposes a procedure for identifying dynamic routing policies in stochastic transportation networks. It addresses the problem of maximizing the probability of arriving on time. Given a current location (node), the goal is to identify the next node to visit so that the probability of arriving at the destination by time \(t\) or sooner is maximized, given the probability density functions for the link travel times. The Bellman principle of optimality is applied to formulate the mathematical model of this problem. The unknown functions describing the maximum probability of arriving on time are estimated accurately for a few sample networks by using the Picard method of successive approximations. The maximum probabilities can be evaluated without enumerating the network paths. The Laplace transform and its numerical inversion are introduced to reduce the computational cost of evaluating the convolution integrals that result from the successive approximation procedure.

MSC:

90C39 Dynamic programming
90B15 Stochastic network models in operations research
90B06 Transportation, logistics and supply chain management
90C35 Programming involving graphs or networks
Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.