×

Limit cycle and conserved dynamics. (English) Zbl 1130.82329

Summary: We demonstrate here that the potential can coexist with limit cycle in nonlinear dissipative dynamics, where the potential plays the driving role for dynamics and determines the final steady state distribution in a manner similar to other situations in physics. First, we show the existence of limit cycle from a typical physics setting by an explicit construction: the potential is of the Mexican-hat shape, the strength of the magnetic field scales with that of the potential gradient near the limit cycle, and the friction goes to zero faster than that of potential gradient when approaching to the limit cycle. The dynamics at the limit cycle is conserved in this limit. The diffusion matrix is nevertheless finite at the limit cycle. Second, based on the physics knowledge, we construct the potential in the dynamics with limit cycle in a typical dynamical systems setting. Third, we argue that such a construction can be, in principle, carried out in a general situation combined with a novel method. Our present result may be useful in many applications, such as in the discussion of metastability of limit cycle and in the construction of Hopfield potential in the neural network computation.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics

References:

[1] DOI: 10.1143/PTP.51.1731 · doi:10.1143/PTP.51.1731
[2] DOI: 10.1007/978-3-662-03952-6 · doi:10.1007/978-3-662-03952-6
[3] Linder B., Phys. Rep. 382 pp 321–
[4] DOI: 10.1088/0305-4470/37/3/L01 · Zbl 1050.60056 · doi:10.1088/0305-4470/37/3/L01
[5] DOI: 10.1088/0953-8984/17/47/010 · doi:10.1088/0953-8984/17/47/010
[6] Guckenheimer J., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (1997)
[7] J. Hertz, The Handbook of Brain Theory and Neural Networks, 2nd edn., ed. M. A. Arbib (MIT Press, Cambridge, 2003) pp. 248–252.
[8] DOI: 10.1016/j.plrev.2005.03.002 · doi:10.1016/j.plrev.2005.03.002
[9] DOI: 10.1023/B:JOSS.0000013966.54504.da · Zbl 1072.82018 · doi:10.1023/B:JOSS.0000013966.54504.da
[10] DOI: 10.1103/PhysRevE.55.2369 · doi:10.1103/PhysRevE.55.2369
[11] DOI: 10.1103/PhysRevLett.90.210201 · doi:10.1103/PhysRevLett.90.210201
[12] DOI: 10.1103/PhysRevLett.89.011101 · doi:10.1103/PhysRevLett.89.011101
[13] DOI: 10.1016/S0031-8914(40)90098-2 · Zbl 0061.46405 · doi:10.1016/S0031-8914(40)90098-2
[14] DOI: 10.1103/RevModPhys.62.251 · doi:10.1103/RevModPhys.62.251
[15] van Kampen N. G., Stochastic Processes in Physics and Chemistry (1992) · Zbl 0511.60038
[16] Goldstein H., Classical Mechanics (1980)
[17] J. D. Murray, Mathematical Biology I: An Introduction, 3rd edn. (Springer, New York, 2002) p. 280. · Zbl 1006.92001
[18] Kwon C., Proc. Natl Aca. Sci. (USA) 102 pp 13039–
[19] Zhu X.-M., Func. Integr. Genomics 4 pp 188–
[20] DOI: 10.1142/S0219720004000946 · doi:10.1142/S0219720004000946
[21] DOI: 10.1023/A:1004593915069 · Zbl 0934.37010 · doi:10.1023/A:1004593915069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.