×

\(V\)- and \(D\)-optimal population designs for the simple linear regression model with a random intercept term. (English) Zbl 1130.62071

Summary: \(V\)- and \(D\)-optimal population designs for a simple linear regression model with a random intercept term are considered. This is done with special reference to longitudinal data, that is data measured repeatedly at specified time points. Individual designs, comprising up to \(k+1\) distinct and equally spaced values of the explanatory variable, are assumed to be available. The problem of constructing a population design which allocates weights to these individual designs in such a way that the variances associated with the mean marginal responses at a given vector of time points are in some sense minimized is addressed. \(V\)-optimal designs are obtained and a geometric approach to confirm the global optimality or otherwise of these designs is introduced. The study is extended to the \(D\)-optimal case. It is noted that the \(V\)- and \(D\)-optimal population designs are robust to the value of the intraclass correlation coefficient.

MSC:

62K05 Optimal statistical designs
62J05 Linear regression; mixed models
Full Text: DOI

References:

[1] Abt, M.; Liski, E. P.; Mandal, N. K.; Sinha, B. K., Optimal designs in growth curve models: Part I. Correlated model for linear growth: optimal designs for slope parameter estimation and growth prediction, J. Statist. Plann. Inference, 64, 141-150 (1997) · Zbl 0904.62085
[2] Abt, M.; Gaffke, N.; Liski, E. P.; Sinha, B. K., Optimal designs in growth curve models—II. Correlated model for quadratic growth: optimal designs for parameter estimation and growth prediction, J. Statist. Plann. Inference, 67, 287-296 (1998) · Zbl 0944.62066
[3] Atkins, J. E.; Cheng, C. S., Optimal regression designs in the presence of random block effects, J. Statist. Plann. Inference, 77, 321-335 (1999) · Zbl 0930.62073
[4] Atkinson, A. C.; Donev, A. N., Optimum Experimental Designs (1992), Oxford University Press: Oxford University Press Oxford · Zbl 0829.62070
[5] Bazaraa, M. S.; Shetty, C. M., Nonlinear Programming: Theory and Algorithms (1979), Wiley: Wiley New York · Zbl 0476.90035
[6] Berger, M. P.F.; Tan, F. E.S., Robust designs for linear mixed models, Appl. Statist., 53, 569-581 (2004) · Zbl 1111.62317
[7] Bogacka, B., On information matrices for fixed and random parameters in generally balanced experimental block designs, (Kitsos, C. P.; Müller, W. G., Proceedings of MoDa 4 (1995), Physica Verlag: Physica Verlag Heidelberg), 141-149 · Zbl 0840.62077
[8] Brown, H.; Prescott, R., Applied Mixed Models in Medicine (1999), Wiley: Wiley New York · Zbl 0954.62126
[9] Cheng, C. S., Optimal regression designs under random block-effects models, Statist. Sinica, 5, 485-497 (1995) · Zbl 0828.62066
[10] Chernoff, H., Locally optimal designs for estimating parameters, Ann. Math. Statist., 24, 586-602 (1953) · Zbl 0053.10504
[11] Cook, W. J.; Cunningham, W. H.; Pulleyblank, W. R.; Schrijver, A., Combinatorial Optimization (1998), Wiley: Wiley New York · Zbl 0909.90227
[12] Debusho, L.K., 2004. Optimal designs for linear mixed models. Ph.D. Thesis, University of KwaZulu-Natal.; Debusho, L.K., 2004. Optimal designs for linear mixed models. Ph.D. Thesis, University of KwaZulu-Natal.
[13] Duchateau, L.; Janssen, P.; Rowlands, G. J., Linear Mixed Models. An Introduction with Applications in Veterinary Research (1998), International Livestock Research Institute: International Livestock Research Institute Nairobi, Kenya
[14] Entholzner, M.; Benda, N.; Schmelter, T.; Schwabe, R., A note on designs for estimating population parameters, Biometrical Lett.-Listy Biometryczne, 42, 25-41 (2005)
[15] Fedorov, V. V., Theory of Optimal Experiments (1972), Academic Press: Academic Press New York, London
[16] Fedorov, V. V.; Hackl, P., Model-Oriented Design of Experiments (1997), Springer: Springer New York · Zbl 0878.62052
[17] Feller, W. 1968. An Introduction to Probability Theory and its Applications, vol. I, third ed. Wiley, New York.; Feller, W. 1968. An Introduction to Probability Theory and its Applications, vol. I, third ed. Wiley, New York. · Zbl 0155.23101
[18] Goos, P., The Optimal Design of Blocked and Split-Plot Experiments (2002), Springer: Springer New York · Zbl 1008.62068
[19] Goos, P.; Vandebroek, M., \(D\) optimal response surface designs in the presence of random block effects, Comput. Statist. Data Anal., 37, 433-453 (2001) · Zbl 1079.62532
[20] Jones, B., Searching for optimal block designs when block effects are random, Biometrical J., 8, 909-918 (1986) · Zbl 0611.62098
[21] Khuri, A. I., Response surface models with random block effects, Technometrics, 34, 26-37 (1992) · Zbl 0850.62618
[22] Longford, N. T., Random Coefficient Models (1993), Oxford University Press: Oxford University Press Oxford · Zbl 0937.62520
[23] Mallet, A.; Mentré, F., An approach to the design of experiments for estimating the distribution of parameters in random models, (Vichnevetsky, R.; Borne, P.; Vignes, J., Proceedings of the 12th IMACS World Congress on Scientific Computation, vol. 5 (1988), Gerdfin-Sité Scientifique: Gerdfin-Sité Scientifique Villeneuve d’Asq), 134-137
[24] Mentré, F.; Mallet, A.; Baccar, D., Optimal design in random effects regression models, Biometrika, 84, 429-442 (1997) · Zbl 0882.62069
[25] Ouwens, M. J.N. M.; Tan, F. E.S.; Berger, M. P.F., Maximin \(D\)-optimal designs for longitudinal mixed effects models, Biometrics, 58, 735-741 (2002) · Zbl 1210.62103
[26] Robinson, G. K., That BLUP is a good thing: the estimation of random effects, Statist. Sci., 6, 15-51 (1991) · Zbl 0955.62500
[27] Searle, S. R.; Casella, G.; McCulloch, C. E., Variance Components (1992), Wiley: Wiley New York · Zbl 0850.62007
[28] Tan, F. E.S.; Berger, M. P.F., Optimal allocation of time points for the random effects model, Comm. Statist.—Simulations, 28, 517-540 (1999) · Zbl 0929.62081
[29] Verbeke, G.; Molenberghs, G., Linear Mixed Models for Longitudinal Data (2000), Springer: Springer New York · Zbl 0956.62055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.