×

Limit points of eigenvalues of truncated unbounded tridiagonal operators. (English) Zbl 1130.47002

Let \(\mathcal{H}\) be a separable Hilbert space and let \((e_{n})\) be an orthonormal basis of \(\mathcal{H}\). Let \(T\) be a given selfadjoint operator in \(\mathcal{H}\), denote by \(P_{N}\) the projection operator of \(\mathcal{H}\) onto the subspace \(\mathcal{H}_{N}\) spanned by the elements \(\{e_{1},\dots,e_{n}\}\), and consider the truncated operator \(T_{N}=P_{N}TP_{N}\). Denote by \(\Lambda(T)\) the set of all limit points of eigenvalues of \(T_{N}\) as \(N\rightarrow\infty\). For the case of a tridiagonal operator \(T\), i.e., \[ Te_{n}=a_{n}e_{n+1}+a_{n-1}e_{n-1}+b_{n}e_{n}\quad(n=1,2,\dots), \] the authors give conditions under which the spectrum \(\sigma(T)\) of \(T\) coincides with the set \(\Lambda (T)\). In particular, they prove that if \(T\) is a selfadjoint operator with the property \(\sigma (T) = \Lambda (T)\), then the continued fraction associated with \(T\)
\[ K(\lambda)=\frac{1}{\lambda-b_1-\frac{a_{1}^{2}}{\lambda-b_2-\frac{a_{2}^{2}}{\lambda - b_3-\dots}}} \] represents a meromorphic function in \(\mathbb{C}\) (resp., \(\mathbb{C}\backslash\{0\}\)) if \(T\) has a discrete spectrum with eigenvalues \(\lambda_{n}\) such that \(\lim_{n \rightarrow \infty}|\lambda_{n}|=\infty\) (resp., \(\lim_{n\rightarrow\infty}|\lambda_{n}|=0\)).

MSC:

47A10 Spectrum, resolvent
40A15 Convergence and divergence of continued fractions
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
15A18 Eigenvalues, singular values, and eigenvectors
47A75 Eigenvalue problems for linear operators
Full Text: DOI

References:

[1] G.D. Alben, C.K. Chui, W.R. Madych, F.J. Narcowich and P.W. Smith: “Pade approximation of Stieltjes series”, J. Appr. Theory, Vol. 14, (1975), pp. 302-316. http://dx.doi.org/10.1016/0021-9045(75)90077-5; · Zbl 0323.30044
[2] P. Deliyiannis and E.K. Ifantis: “Spectral theory of the difference equation f(n + 1) + f(n −1) = (E − φ(n))f (n)”, J. Math. Phys., Vol. 10, (1969), pp. 421-425. http://dx.doi.org/10.1063/1.1664855; · Zbl 0172.12305
[3] P. Hartman and A. Winter: “Separation theorems for bounded hermitian forms”, Amer. J. Math, Vol. 71, (1949), pp. 856-878.; · Zbl 0035.19801
[4] E.K. Ifantis and P.D. Siafarikas: “An alternative proof of a theorem of Stieltjes and related results”, J. Comp. Appl. Math., Vol. 65, (1995), pp. 165-172. http://dx.doi.org/10.1016/0377-0427(95)00123-9; · Zbl 0847.42017
[5] E.K. Ifantis and P. Panagopoulos: “Limit points of eigenvalues of truncated tridiagonal operators”, J. Comp. Appl. Math., Vol. 133, (2001), pp. 413-422. http://dx.doi.org/10.1016/S0377-0427(00)00663-4; · Zbl 0994.47004
[6] J. Rappaz: “Approximation of the spectrum of non compact operators given by the magnetohydrodynamic stability of plasma”, Numer. Math., Vol. 28, (1977), pp. 15-24. http://dx.doi.org/10.1007/BF01403854; · Zbl 0341.65044
[7] T.J. Stieltjes: “Recherches sur les fractions continues”, Ann. Fac. Sci. Toulouse Mat., Vol. 8, (1894), J1-J122; Vol. 9, (1895), A1-A47; Oeuvres, Vol. 2, (1918), pp. 398-506.; · JFM 25.0326.01
[8] M.H. Stone: “Linear Transformations in Hilbert space and their Applications to Analysis”, In: Amer. Math. Soc. Colloq. Publ., Vol. 15, Amer. Math. Soc., Providence, R.I. New York, 1932.; · JFM 58.0420.02
[9] H.S. Wall: “On continued fractions which represent meromorphic functions”, Bull. Amer. Math. Soc., Vol. 39, (1933), pp. 946-952. http://dx.doi.org/10.1090/S0002-9904-1933-05778-6; · Zbl 0008.26202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.