×

The Albanese map for curves and contractions. (Application d’Albanese pour les courbes et contractions.) (English) Zbl 1130.14024

The author introduces the notion of curves with singularities of coordinate axes type (TAC). A basic example of TAC singularity is given by the union of the coordinate axes in an affine space. Over an algebraically closed field, any TAC singularity is étale locally isomorphic to this example. Let \(\mathcal{X}\) be a semi-stable curve over a discrete valuation ring. A rational point on the generic fiber \(\mathcal{X}_K\) (assumed to be smooth) defines an immersion \(\mathcal{X}_K \to J_K\), where \(J_K\) is the Jacobian variety of \(\mathcal{X}_K\). However, the induced rational map \(a: \mathcal{X} \cdots \to \mathcal{N}\) (where \(\mathcal{N}\) is the Néron model of \(J_K\)) may contract an irreducible component of the special fiber of \(\mathcal{X}\). Contracting such fibers, one obtains \(a_{\min}: \mathcal{X}_{\min} \cdots \to \mathcal{N}\) through which \(a\) factors. It is proved that \(\mathcal{X}_{\min}\) has only TAC singularities. Moreover, \(a_{\min}\) is defined on the smooth locus, and the restriction of \(a_{\min}\) to the smooth locus of any irreducible component of the special fiber of \(\mathcal{X}_{\min}\) is an immersion. As an application, a result of C. Deninger and A. Werner [Ann. Sci. Éc. Norm. Supér. (4) 38, No. 4, 553–597 (2005; Zbl 1087.14026)] is proved under a milder assumption.

MSC:

14H20 Singularities of curves, local rings
14G20 Local ground fields in algebraic geometry

Citations:

Zbl 1087.14026
Full Text: DOI

References:

[1] Altman, A.; Kleiman, S., Compactifying the Picard scheme, Adv. Math., 35, 50-112 (1980) · Zbl 0427.14015 · doi:10.1016/0001-8708(80)90043-2
[2] Bosch, S., Lütkebohmert, W., Raynaud, M. : Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 21. Springer, Heidelberg (1990) · Zbl 0705.14001
[3] Deligne, P.; Mumford, D., The irreducibility of the space of curves of given genus, Inst. Hautes études Sci. Publ. Math., 34, 75-110 (1969) · Zbl 0181.48803
[4] Deninger, C.; Werner, A., Vector bundles on p-adic curves and parallel transport, Ann. Sci. École Norm. Sup., 38, 4, 553-597 (2005) · Zbl 1087.14026
[5] Grothendieck, A. : Eléments de géométrie algébrique II, III, IV. Inst. Hautes Études Sci. Publ. Math. 8, 11, 17, 20, 24, 28, 32 (1961-1967)
[6] Grothendieck, A. : Schémas en groupes I. In: Lecture Notes in Mathematics, vol. 151. Springer, Berlin (1970) · Zbl 0207.51401
[7] Kleiman, S. : The Picard scheme. arXiv:/math.AG/0504020 · Zbl 1303.14052
[8] Piene, R., Courbes sur un trait et morphismes de contraction, Math. Scand., 35, 5-15 (1974) · Zbl 0293.14009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.