×

Natural convection in shallow water. (English) Zbl 1129.76049

Summary: Starting from three-dimensional Boussinesq model and taking the limit as the domain thickness tends to zero, we derive rigorously a two-dimensional model for natural convection in shallow water. The model reduces to a degenerate elliptic equation for pressure, and allows to derive an explicit formula for horizontal components of velocity and for the vertical diffusion of the vertical component. The macroscopic flow is driven by temperature variations as well as by the bottom topography.

MSC:

76R10 Free convection
80A20 Heat and mass transfer, heat flow (MSC2010)
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] Batchelor, G. K., An Introduction to Fluid Mechanics (1970), Cambridge University Press: Cambridge University Press Cambridge
[2] Bernardi, C.; M��tivet, B.; Pernaud-Thomas, B., Couplage des équations de Navier-Stokes et de la chaleur: le modèle et son approximation par éléments finis, RAIRO Modél. Math. Anal. Numér., 29, 871-921 (1995) · Zbl 0839.76016
[3] Boussinesq, J., Théorie analytique de la chaleur (1903), Gauthier-Villars: Gauthier-Villars Paris · JFM 34.0887.05
[4] D. Brech, J. Lemoine, J. Simon, A vertical diffusion model for lakes, SIAM J. Math. Anal. 30 (3) 603-622.; D. Brech, J. Lemoine, J. Simon, A vertical diffusion model for lakes, SIAM J. Math. Anal. 30 (3) 603-622. · Zbl 0930.35120
[5] Brech, D.; Lemoine, J.; Simon, J., Modelization of shallow lakes and seas, Proceedings of STAMM 98, Chapman and Hall Monographs and Surveys in Pure and Applied Mathematics, 106, 260-271 (2000) · Zbl 1100.86500
[6] Jacobs, A. F.G.; Jetten, T. H.; Lucassen, D. C.; Heuskinveld, B.; Nieveen, J. P., Daily temperature variation in a natural shallow water body, Agric. Forest Meteorol., 88, 269-277 (1997)
[7] L. Landau, E. Lifchitz, Mécanique des fluides, Elipses, 3ème édition, 1994.; L. Landau, E. Lifchitz, Mécanique des fluides, Elipses, 3ème édition, 1994.
[8] Losordo, T. M.; Piedrahita, R. H., Modelling temperature variation and thermal stratification in shallow aquaculture ponds, Ecological Modelling, 54, 189-226 (1991)
[9] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes, vol. 9, American Mathematical Society, Providence, RI, 2003.; A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes, vol. 9, American Mathematical Society, Providence, RI, 2003. · Zbl 1278.76004
[10] Marušić, S.; Marušić-Paloka, E., Two-scale convergence for thin domains and its applications to some lower-dimensional models in fluid mechanics, Asymptotic Anal., 23, 23-58 (2000) · Zbl 0957.76070
[11] Marušić-Paloka, E., Solvability of the Navier-Stokes system with \(L^2\) boundary data, Appl. Math. Optim., 41, 365-375 (2000) · Zbl 0952.35090
[12] Santos da Rocha, M.; Rojas-Medar, M. A.; Rojas-Medar, M. D., On the existence of the stationary solution to the equations of natural convection with boundary data in \(L^2\), Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci., 459, 2031, 609-621 (2003) · Zbl 1047.76119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.