×

Numerical boundary conditions for globally mass conservative methods to solve the shallow-water equations and applied to river flow. (English) Zbl 1129.76033

Summary: We present a revision of some well-known discretization techniques for numerical boundary conditions for shallow-water flow models. More recent options are also considered in the search for a fully conservative technique that is able to preserve the good properties of a conservative scheme used for interior points. Two conservative numerical schemes are used as representatives of explicit and implicit numerical methods. The implementation of different boundary options to these schemes is compared by means of simulation of several test cases with exact solution. The schemes with the global conservation boundary discretization are applied to the simulation of a real river flood wave leading to very satisfactory results.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography

References:

[1] Glaister, Approximate Riemann solutions of the shallow water equations, Journal of Hydraulic Research 26 pp 293– (1988) · Zbl 0707.76068
[2] García Navarro, Some considerations and improvements on the performance of Roe’s schemes for 1D irregular geometries on numerical treatment of the source terms in the shallow water equations, Computers and Fluids 126 pp 26– (2000)
[3] Burguete, Efficient construction of high-resolution TVD conservative schemes for equations with source terms: application to shallow water flows, International Journal for Numerical Methods in Fluids 37 pp 209– (2001) · Zbl 1003.76059 · doi:10.1002/fld.175
[4] Burguete, Improving simple explicit methods for unsteady open channel and river flow, International Journal for Numerical Methods in Fluids 45 pp 125– (2004) · Zbl 1079.76594 · doi:10.1002/fld.619
[5] Burguete, Implicit schemes with large time step for non-linear equations: application to river flow hydraulics, International Journal for Numerical Methods in Fluids 46 pp 607– (2004) · Zbl 1060.76585 · doi:10.1002/fld.772
[6] Kreiss, Initial boundary value problem for hyperbolic systems, Communication of Pure and Applied Mathematics 23 pp 277– (1970) · Zbl 0188.41102
[7] Fox, Numerical Solution of Ordinary and Partial Differential Equations (1962) · Zbl 0101.09904
[8] Yee HC Numerical approximation of boundary conditions with applications to inviscid equations of gas dynamics 1981
[9] Yee, Boundary approximations for implicit schemes for one-dimensional inviscid equations of gas dynamics, AIAA Journal 20 (9) pp 1203– (1982)
[10] Jin, Dynamic flood routing with explicit and implicit numerical solution schemes, Journal of Hydraulic Engineering 123 (3) pp 166– (1997) · doi:10.1061/(ASCE)0733-9429(1997)123:3(166)
[11] Villanueva I Estudio de regímenes transitorios y permanentes en ríos y canales 1999
[12] Burguete, Numerical simulation of runoff from extreme rainfall events in a mountain water catchment, Natural Hazards in Earth System Sciences 2 pp 1– (2002) · doi:10.5194/nhess-2-109-2002
[13] Saint Venant AJCB de Théory de mouvement non-permanent deseaux avec aplication aux crues de rivières et á l’introduction des marées dans leur lit 1871
[14] Gauckler PG Études théoriques et practiques sur l’écoulement et le mouvement des eaux 1867
[15] Manning R 1890
[16] Hirsch, Computational Methods for Inviscid and Viscous Flows: Numerical Computation of Internal and External Flows (1990) · Zbl 0742.76001
[17] Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics 43 (2) pp 357– (1981) · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5
[18] Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM Journal on Numerical Analysis 21 pp 995– (1984) · Zbl 0565.65048 · doi:10.1137/0721062
[19] Roe, ICASE Report 84-53, NASA CR-172478 (1984)
[20] Courant, Über die partiellen Differenzengleichungen der mathematisches, Mathematische Annalen 100 pp 32– (1928) · JFM 54.0486.01 · doi:10.1007/BF01448839
[21] Gustafsson, The convergence rate for difference approximations to mixed initial boundary value problem, Mathematics of Computations 29 pp 396– (1975) · Zbl 0313.65085 · doi:10.1090/S0025-5718-1975-0386296-7
[22] Kreiss, Difference approximations for mixed initial boundary value problems, Proceedings of the Royal Society of London Series A 323 pp 255– (1971) · Zbl 0231.65073
[23] Gustafsson, Stability theory of difference approximations for mixed initial boundary value problems, Mathematics of Computations 26 pp 649– (1972) · Zbl 0293.65076 · doi:10.1090/S0025-5718-1972-0341888-3
[24] MacDonald I Analysis and computation of steady open channel flow 1996
[25] MacDonald, Analytical benchmark solutions for open-channel flows, Journal of Hydraulic Engineering 123 (11) pp 1041– (1997) · doi:10.1061/(ASCE)0733-9429(1997)123:11(1041)
[26] Strickler, Beiträge zur Frage der Geschwindigkeitsformel und der Rauhligkeitszahlen für Ströme, Kanäle und Geschlossene Leitungen 16 (1923)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.