×

Casson knot invariants of periodic knots with rational quotients. (English) Zbl 1129.57011

A link \(L\) in \(S^3\) is called a \(p\)-periodic link (\(p\geq 2\) an integer) if there exists an orientation preserving auto-homeomorphism \(h\) of \(S^3\) such that \(h(L)=L\), \(h\) is of order \(p\) and the set \(Fix(h)\) of fixed points of \(h\) is a circle disjoint from \(L\). In this case the link \(L/ \langle h \rangle\cup Fix(h)\) in the orbit space \(S^3/ \langle h \rangle\cong S^3\) is called the quotient link of \(L\). A link \(L\) in \(S^3\) is called a \(p\)-periodic link with rational quotient if it is a \(p\)-periodic link whose quotient is a 2-bridge link. In this paper the authors give a formula for the Casson invariant of a \(p\)-period knot in \(S^3\) whose quotient link is a 2-bridge link with Conway normal form \(C(2, 2n_1,-2,2n_2,\dots,2n_{2m},2)\) via the integers \(p,n_1,n_2,\dots,n_{2m}\) (\(p\geq2\) and \(m\geq1\)). (The Casson invariant can be defined as half of the value of the second derivative of the Alexander polynomial \(\Delta_K(t)\) at \(t=1\).) If the integers \(n_1,n_2,\dots,n_{2m}\) have the same sign the \(\Delta\)-unknotting number of the \(p\)-periodic knot is given in terms of the integers \(p,n_1,n_2,\dots,n_{2m}\). Finally, a recurrence formula for the calculation of the Alexander polynomial of the 2-bridge knot with Conway normal form \(C(2n_1,2n_2,\dots,2n_m)\) is given.

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
Full Text: DOI

References:

[1] DOI: 10.1515/9781400860623 · doi:10.1515/9781400860623
[2] DOI: 10.1007/BF01444524 · Zbl 0694.57003 · doi:10.1007/BF01444524
[3] DOI: 10.4153/CJM-1981-032-3 · Zbl 0469.57004 · doi:10.4153/CJM-1981-032-3
[4] DOI: 10.1017/S0305004100004679 · Zbl 0974.57004 · doi:10.1017/S0305004100004679
[5] Kanenobu T., Kobe J. Math. 9 pp 171–
[6] Kauffman L. H., Annals of Mathematics Studies 115, in: On Knots (1987)
[7] Kawauchi A., A Survey of Knot Theory (1996) · Zbl 0861.57001
[8] Lee S. Y., Osaka J. Math. 35 pp 529–
[9] DOI: 10.1142/S0218216506004403 · Zbl 1088.57007 · doi:10.1142/S0218216506004403
[10] DOI: 10.1007/BF02566836 · Zbl 0206.25603 · doi:10.1007/BF02566836
[11] DOI: 10.1142/S0218216502001871 · Zbl 1030.57022 · doi:10.1142/S0218216502001871
[12] DOI: 10.1007/BF01443506 · Zbl 0646.57005 · doi:10.1007/BF01443506
[13] DOI: 10.1142/S0218216598000334 · Zbl 0913.57004 · doi:10.1142/S0218216598000334
[14] DOI: 10.2969/jmsj/04240713 · Zbl 0723.57007 · doi:10.2969/jmsj/04240713
[15] DOI: 10.1142/S0218216501001116 · Zbl 0997.57021 · doi:10.1142/S0218216501001116
[16] Rolfsen D., Knots and Links (1976) · Zbl 0339.55004
[17] DOI: 10.1007/BF01473875 · Zbl 0071.39002 · doi:10.1007/BF01473875
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.