×

On the index and spectrum of differential operators on \(\mathbb{R}^{N}\). (English) Zbl 1129.47034

Let \(P(x,\partial )\) be an \(r\times r\) system of differential operators having continuous coefficients with vanishing oscillation at infinity. Within the Banach algebra approach to the Fredholm theory for differential and pseudodifferential operators, it was proved that \(P(x,\partial)\) is Fredholm from \((W^{m,p})^r\) to \((L^p)^r\) for all or no values of \(p\in (1,\infty )\) [cf.H. O. Cordes, Appl. Anal. 2, 115–129 (1972; Zbl 0244.46080); R. Illner, Commun.Partial Differ.Equations 2, 359–393 (1977; Zbl 0352.47021); S.–H. Sun, Sci. Sin., Ser. A 27, 337–344 (1984; Zbl 0547.47033)].
The author proves in the present paper that both the index (when defined) and the spectrum of \(P(x,\partial)\) are independent of \(p\). His method makes use of the connection between the Fredholm property and the asymptotic behavior of solutions found earlier by the author [J. Differ.Equations 193, No. 2, 460–480 (2003; Zbl 1044.47035); erratum ibid. 237, No. 1, 257 (2007)].

MSC:

47F05 General theory of partial differential operators
35J45 Systems of elliptic equations, general (MSC2000)
47A53 (Semi-) Fredholm operators; index theories
Full Text: DOI

References:

[1] Constantine Callias, Axial anomalies and index theorems on open spaces, Comm. Math. Phys. 62 (1978), no. 3, 213 – 234. R. Bott and R. Seeley, Some remarks on the paper of Callias: ”Axial anomalies and index theorems on open spaces” [Comm. Math. Phys. 62 (1978), no. 3, 213 – 234; MR 80h:58045a], Comm. Math. Phys. 62 (1978), no. 3, 235 – 245. · Zbl 0409.58019
[2] H. O. Cordes, Beispiele von Pseudo-Differentialoperator-Algebren, Applicable Anal. 2 (1972), 115 – 129 (German, with English summary). Collection of articles dedicated to Wolfgang Haack on the occasion of his 70th birthday. · Zbl 0244.46080 · doi:10.1080/00036817208839032
[3] H. O. Cordes, On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Funct. Anal. 18 (1975), 115 – 131. · Zbl 0306.47024 · doi:10.1016/0022-1236(75)90020-8
[4] E. B. Davies, \?^{\?} spectral theory of higher-order elliptic differential operators, Bull. London Math. Soc. 29 (1997), no. 5, 513 – 546. · Zbl 0955.35019 · doi:10.1112/S002460939700324X
[5] J. Dieudonné, Éléments d’analyse. Tome IX. Chapitre XXIV, Cahiers Scientifiques [Scientific Reports], XL11, Gauthier-Villars, Paris, 1982 (French). · Zbl 0485.58001
[6] Qihong Fan and M. W. Wong, A characterization of Fredholm pseudo-differential operators, J. London Math. Soc. (2) 55 (1997), no. 1, 139 – 145. · Zbl 0876.35141 · doi:10.1112/S0024610796004632
[7] B. V. Fedosov, Analytic formulae for the index of elliptic operators, Trudy Moskov. Mat. Obšč. 30 (1974), 159 – 241 (Russian). · Zbl 0349.58006
[8] Giuseppe Geymonat, Sui problemi ai limiti per i sistemi lineari ellittici, Ann. Mat. Pura Appl. (4) 69 (1965), 207 – 284 (Italian). · Zbl 0152.11102 · doi:10.1007/BF02414374
[9] Rainer Hempel and Jürgen Voigt, The spectrum of a Schrödinger operator in \?_{\?}(\?^{\?}) is \?-independent, Comm. Math. Phys. 104 (1986), no. 2, 243 – 250. · Zbl 0593.35033
[10] Matthias Hieber and Elmar Schrohe, \?^{\?} spectral independence of elliptic operators via commutator estimates, Positivity 3 (1999), no. 3, 259 – 272. · Zbl 0930.35058 · doi:10.1023/A:1009777826708
[11] L. Hörmander, The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math. 32 (1979), no. 3, 360 – 444. · Zbl 0388.47032 · doi:10.1002/cpa.3160320304
[12] Reinhard Illner, Über Banachalgebren beschränkter Pseudodifferentialoperatoren und Fredholmkriterien in \?^{\?}(\?\(^{n}\)), Mathematische Institut der Universität Bonn, Bonn, 1976 (German). Inauguraldissertation zur Erlangung des Doktorgrades der Hohen Mathem.-Naturw. Fakultät der Rheinischen Friedrich-Wilhelms-Universität, Bonn; Bonner Mathematische Schriften, No. 86. Reinhard Illner, On algebras of pseudo differential operators in \?^{\?}(\?\(^{n}\)), Comm. Partial Differential Equations 2 (1977), no. 4, 359 – 393. · Zbl 0352.47021 · doi:10.1080/03605307708820034
[13] A. Kozhevnikov, Complete scale of isomorphisms for elliptic pseudodifferential boundary-value problems, J. London Math. Soc. (2) 64 (2001), no. 2, 409 – 422. · Zbl 1017.35124 · doi:10.1112/S0024610701002514
[14] Hans-Gerd Leopold and Elmar Schrohe, Invariance of the \?_{\?} spectrum for hypoelliptic operators, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3679 – 3687. · Zbl 0904.35063
[15] Robert C. McOwen, The behavior of the Laplacian on weighted Sobolev spaces, Comm. Pure Appl. Math. 32 (1979), no. 6, 783 – 795. · Zbl 0426.35029 · doi:10.1002/cpa.3160320604
[16] Patrick J. Rabier, Fredholm operators, semigroups and the asymptotic and boundary behavior of solutions of PDEs, J. Differential Equations 193 (2003), no. 2, 460 – 480. · Zbl 1044.47035 · doi:10.1016/S0022-0396(03)00094-9
[17] P. J. Rabier and C. A. Stuart, Fredholm properties of Schrödinger operators in \?^{\?}(\?^{\?}), Differential Integral Equations 13 (2000), no. 10-12, 1429 – 1444. · Zbl 0989.47036
[18] R. T. Seeley, The index of elliptic systems of singular integral operators, J. Math. Anal. Appl. 7 (1963), 289 – 309. · Zbl 0133.37603 · doi:10.1016/0022-247X(63)90054-4
[19] Shun Hua Sun, A Banach algebra approach to the Fredholm theory of pseudodifferential operators, Sci. Sinica Ser. A 27 (1984), no. 4, 337 – 344. · Zbl 0547.47033
[20] Michael E. Taylor, Gelfand theory of pseudo differential operators and hypoelliptic operators, Trans. Amer. Math. Soc. 153 (1971), 495 – 510. · Zbl 0207.45402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.