×

A KAM theorem for reversible systems of infinite dimension. (English) Zbl 1129.37043

Summary: For reversible systems of infinite dimension we prove an infinite-dimensional KAM theorem with an application to the network of weakly coupled oscillators of friction. The KAM theorem shows that there are many invariant tori of infinite dimension, and thus many almost periodic solutions, for the reversible systems.

MSC:

37K55 Perturbations, KAM theory for infinite-dimensional Hamiltonian and Lagrangian systems
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C27 Almost and pseudo-almost periodic solutions to ordinary differential equations
Full Text: DOI

References:

[1] Kolmogorov, A. N.: On the conservation of conditionally periodic motions for a small change in Hamilton’s function, (Russian). Dokl. Acad. Nauk SSSR, 98, 525–530 (1954) · Zbl 0056.31502
[2] Arnol’d, V. I.: Proof of a theorem by A. N. Kolmogorov on the persistence of quasiperiodic motions under small perturbations of the Hamiltonain. Russian Math. Surveys, 18(5), 9–36 (1963) · Zbl 0129.16606 · doi:10.1070/RM1963v018n05ABEH004130
[3] Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Gott. II, Math. -Phys. Kl., 1, 1–20 (1962) · Zbl 0107.29301
[4] Vittot, M., Bellissard, J.: Invariant tori for an infinite lattice of coupled classical rotators pdimensional Hamiltonian systems, Preprint, CPT-Marseille, 1985
[5] Frohlich, J., Spencer, T., Wayne, C. E.: Localization in Disordered, Nonlinear Dynamical Systems. Statistical Physics, 42, 247–274 (1986) · Zbl 0629.60105 · doi:10.1007/BF01127712
[6] Pöschel, J.: Small divisors with spatial structure in infinite dimensional Hamiltonian systems. Commun. Math. Phys., 127, 351–393 (1990) · Zbl 0702.58065 · doi:10.1007/BF02096763
[7] Kuksin, S. B.: Nearly integrable infinite-dimensional Hamiltonian systems, (Lecture Notes in Math., 1556), Springer-Verlag, New York, 1993 · Zbl 0784.58028
[8] Pöschel, J.: A KAM-theorem for some nonlinear PDEs. Ann. Scuola Norm. Sup. Pisa, Cl. Sci., IV Ser.15, 23, 119–148 (1996) · Zbl 0870.34060
[9] Wayne, C. E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys., 127, 479–528 (1990) · Zbl 0708.35087 · doi:10.1007/BF02104499
[10] Yuan, X.: Quasi-periodic solutions of nonlinear wave equations with a prescribed potential, Discrete and Continuous Dynamical Systems, to appear
[11] Yuan, X.: Quasi-periodic solutions of completely resonant nonlinear wave equations. J. Differental Equations, to appear · Zbl 1146.35307
[12] Smale, S.: The Mathematics of Time, (Essays on Dynamical Systems, Economic Processes, and Related Topics), Springer-Verlag, New York, Heidelberg, Berlin, 1980 · Zbl 0451.58001
[13] Arnol’d, V. I.: Reversible systems, (Nonlinear and Turbulent Processes), Acad. Publ., New York, 1161– 1174, 1984
[14] Arnol’d, V. I., Sevryuk, M. B.: Oscillations and bifurcations in reversible systems, (Nonlinear Phenomena in Plasma Physics and Hydrodynamics, edited by R. Z. Sagdeev), Mir, 31–64, 1986
[15] Bibikov, Yu. N., Pliss, V. A.: On the existence of invariant tori in a neighborhood of the zero solution of a system of ordinary differential equation. Diff. Equat., 3(11), 967–976 (1967) · Zbl 0233.34051
[16] Liu, B., Zanolin, F.: Boundedness of solutions of nonlinear differential equations. J. Differential Equations, 144, 66–98 (1998) · Zbl 0909.34035 · doi:10.1006/jdeq.1997.3355
[17] Yuan, R.: Quasiperiodic solutions and boundedness of solutions for a class of nonlinear differential equations of second order. Nonlinear Analysis, TMA, 31, 649–664 (1996) · Zbl 0894.34037
[18] Moser, J.: Stable and random motions in dynamical systems (H.Weyl Lectures), The Institute for Advanced Study, Princeton University Press and University Of Tokyo Press, Princeton, New Jersey, 1973 · Zbl 0271.70009
[19] Sevryuk, M. B.: Reversible systems, (Lecture Notes in Math. 1211), Springer-Verlag, New York, 1986 · Zbl 0661.58002
[20] Broer, H. W., Huitema, G. B., Sevryuk, M. B.: Quasi-periodic motion in families of dynamical systems, (Lecture Notes in Math. 1645), Springer-Verlag, New York, 1996 · Zbl 0842.58067
[21] Wei, B.: Existence of invariant tori for certain weakly reversible mappings. Acta Mathematica Sinica, English Series, 18(4), 701–718 (2002) · Zbl 1030.37042 · doi:10.1007/s10114-002-0180-z
[22] Bambusi, D.: Exponential stability of breathers in Hamiltonian chains of weakly coupled oscillators. Nonlinearity, 9, 433–457 (1996) · Zbl 0925.70230 · doi:10.1088/0951-7715/9/2/009
[23] MacKay, R. S., Aubry, S.: Proof of existence of breathers of time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity, 7, 1623–1643 (1994) · Zbl 0811.70017 · doi:10.1088/0951-7715/7/6/006
[24] Takeno, S.: Self-localised modes in pure one-dimensionallattice with cubic and quartic lattice anharmonicity. J. Phys. Soc. Japan, 60, 947–959 (1991) · doi:10.1143/JPSJ.60.947
[25] Yuan, X.: Construction of quasi-periodic breathers via KAM technique. Commun. Math. Phys., 226, 61–100 (2002) · Zbl 1006.37043 · doi:10.1007/s002200100593
[26] Halmos, P. R.: Measure Theory, (Graduate Texts in mathematics), Springer-Verlag, New York, 1974
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.