×

A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria. (English) Zbl 1128.92022

Summary: We formulate a deterministic model with two latent periods in the non-constant host and vector populations, in order to theoretically assess the potential impact of personal protection, treatment and possible vaccination strategies on the transmission dynamics of malaria. The thresholds and equilibria for the model are determined. The model is analysed qualitatively to determine criteria for control of a malaria epidemic and is used to compute the threshold vaccination and treatment rates necessary for community-wide control of malaria. In addition to having a disease-free equilibrium, which is locally asymptotically stable when the basic reproductive number is less than unity, the model exhibits the phenomenon of backward bifurcation where a stable disease-free equilibrium coexists with a stable endemic equilibrium for a certain range of associated reproductive number less than one.
From the analysis we deduce that personal protection has a positive impact on disease control but to eradicate the disease in the absence of any other control measures the efficacy and compliance should be very high. Our results show that vaccination and personal protection can suppress the transmission rates of the parasite from human to vector and vice-versa. If the treated populations are infectious then certain conditions should be satisfied for treatment to reduce the spread of malaria in a community. Among the interesting dynamical behaviours of the model, numerical simulations show a backward bifurcation which gives a challenge to the designing of effective control measures.

MSC:

92C60 Medical epidemiology
93C95 Application models in control theory
93C15 Control/observation systems governed by ordinary differential equations
92D30 Epidemiology
Full Text: DOI

References:

[1] Marsh, K., Malaria disaster in Africa, Lancet, 352, 924 (1998)
[2] WHO expert committee on malaria, 20th Report, WHO Regional Office of Africa, 2003.; WHO expert committee on malaria, 20th Report, WHO Regional Office of Africa, 2003.
[3] Lindsay, S. W.; Martens, W. J.M., Malaria in the African highlands: past, present and future, Bull. WHO, 76, 33-45 (1998)
[4] Zhou, G.; Minakawa, N.; Githeko, A. K.; Yan, G., Association between climate variability and malaria epidemics in the east African highlands, Proc. Natl. Acad. Sci. USA, 101, 2375-2380 (2004)
[5] Bush, A. O.; Fernandez, J. C.; Esch, G. W.; Seed, J. R., Parasitism: The Diversity and Ecology of Animal Parasites (2001), Cambridge University Press: Cambridge University Press Cambridge
[6] Grimwade, K.; French, N.; Mbatha, D. D.; Zungu, D. D.; Dedicoat, M.; Gilks, C. F., HIV infection as a cofactor for severe falciparum malaria in adults living in a region of unstable malaria transmission in South Africa, Aids, 18, 547-554 (2004)
[7] World Health Organization: Economic costs of malaria are many times higher than previously estimated, Press release WHO/28, 25 April 2000.; World Health Organization: Economic costs of malaria are many times higher than previously estimated, Press release WHO/28, 25 April 2000.
[8] Ballou, W. R.; Kester, K. E.; Stoute, J. A.; Heppner, D. G., Malaria vaccines: triumphs or tribulations?, Parrasitologia, 41, 403-408 (1999)
[9] Brown, G. V., Progress in the development of malaria vaccines: context and constraints, Parassitologia, 41, 429-432 (1999)
[10] Binka, F. N.; Kubaje, A.; Adjuik, M.; Williams, L. A.; Lengeler, C.; Maude, G. H.; Arma, G. E.; Kajihra, B.; Adiama, J. H.; Lengeler, C.; Smith, P. G., Impact of permethrin treated bed nets in child mortality in Kassena-Nankana district, Ghana: a randomized controlled trial, Trop. Med. Int. Health, 1, 147-154 (1996)
[11] Nevill, C. G.; Some, E. S.; Mung’ala, V. O.; Mutemi, W.; New, L.; Marsh, K.; Lengeler, C.; Snow, R. W., Insecticide-treated bed nets reduce mortality and severe morbidity from among children on the Kenyan Coast, Trop. Med. Int. Health, 1, 139-146 (1996)
[12] Chandre, F.; Darriet, F.; Manguin, S.; Brengues, C.; Carnevale, P.; Guillet, P., Pyrethroid cross resistance spectrum among populations of Anopheles gambiae s.s from \(C \hat{o}\) te d’Ivoire, J. Am. Mosq. Contr. Assoc., 15, 53-59 (1999)
[13] Diabaté, A.; Baldet, T.; Chandre, F.; Akogbeto, M.; Guiguemdé, T. R.; Darriet, F.; Brengues, C.; Guillet, P.; Hemingway, J.; Small, G.; Hougard, J. M., The role of agricultural insecticides in Anopheles gambiae s.l. resistance to pyrethroids in Burkina Faso, West Africa, Am. J. Trop. Med. Hyg., 67, 617-622 (2002)
[14] Erah, P. O.; Arienmughare, G.; Okhamafe, A. O., Plasmodium falciparum malaria resistance to chloroquine in five communities in Southern Nigeria, African J. Biotechnol., 2, 384-389 (2003)
[15] Gomes, M.; Salazar, N. P., Chemotherapy: principles and practice-a case study of the Philippines, Soc. Sci. Med., 30, 789-796 (1990)
[16] Garfield, R. M.; Vermund, S. H., Changes in malaria incidence after mass administration in Nicaragua, Lancet, 2, 500-503 (1983)
[17] Collett, D.; Lye, M. S., Modelling the effect of intervention on the transmission of malaria in east Malaysia, Stat. Med., 6, 853-861 (1987)
[18] Freeman, J.; Laserson, K. F.; Petralanda, I.; Spielman, A., Effect of chemotherapy on malaria transmission among Yanomami Amerindians: simulated consequences of placebo treatment, Am. J. Trop. Med. Hyg., 60, 774-780 (1999)
[19] Bush, A. O.; Fernandez, J. C.; Esch, G. W.; Seed, J. R., Parasitism: The Diversity and Ecology of Parasites (2001), Cambridge University Press: Cambridge University Press Cambridge
[20] C. Chiyaka, W. Garira, S. Dube, Mathematical modelling of the impact of vaccination on malaria epidemiology, Qual. Theor. Diff. Equat. Anal. 1 (1) (2007), to appear.; C. Chiyaka, W. Garira, S. Dube, Mathematical modelling of the impact of vaccination on malaria epidemiology, Qual. Theor. Diff. Equat. Anal. 1 (1) (2007), to appear. · Zbl 1142.92026
[21] Halloran, M. E.; Struchiner, C. J., Modeling transmission dynamics of stage-specific malaria vaccines, Parasitol. Today, 8, 3, 77-85 (1992)
[22] Smith, T.; Killen, G. F.; Maire, N.; Ross, A.; Molineaux, L.; Tediosi, F.; Hutton, G.; Utzinger, J.; Dietz, K.; Tanner, M., Mathematical modelling of the impact of malaria vaccines on the clinical epidemiology and natural history of Plasmodium falciparum malaria: overview, Am. J. Trop. Med. Hyg., 75, Suppl. 2, 1-10 (2006)
[23] Bacaër, N.; Sokna, C., A reaction-diffusion system modeling the spread of resistance to an antimalarial drug, Math. Biosci. Eng., 2, 2, 227-238 (2005) · Zbl 1070.92034
[24] Aneke, S. J., Mathematical modelling of drug resistant malaria parasites and vector populations, Math. Meth. Appl. Sci., 25, 335-346 (2002) · Zbl 0994.92025
[25] Koella, J. C.; Antia, R., Epidemiological models for the spread of antimalarial resistance, Malar. J., 2, 3 (2003)
[26] C. Chiyaka, W. Garira, S. Dube, Transmission model of endemic human malaria in a partially immune population, doi:10.1016/j.mcm.2006.12010.; C. Chiyaka, W. Garira, S. Dube, Transmission model of endemic human malaria in a partially immune population, doi:10.1016/j.mcm.2006.12010. · Zbl 1126.92043
[27] Bowman, C.; Gumel, A. B.; van den Driessche, P.; Wu, J.; Zhu, H., A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol., 67, 1107-1133 (2005) · Zbl 1334.92392
[28] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036
[29] Diekmann, O.; Heesterbeek, J. A.P.; Metz, J. A.P., On the definition and computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol., 25, 365-382 (1990) · Zbl 0726.92018
[30] Hethcote, W. H., The mathematics of infectious diseases, SIAM Rev., 42, 4, 599-653 (2000) · Zbl 0993.92033
[31] Moghadas, S. M., Modelling the effect of imperfect vaccines on disease epidemiology, Disc. Con. Dyn. Syst. Series B, 4, 4, 999-1012 (2004) · Zbl 1052.92038
[32] Miller, L. H.; David, P. H.; Hadley, T. J.; Freeman, R. R., Perspectives for malaria vaccination (and vaccination), Phil. Trans. R. Soc. Lond. B, 307, 99-115 (1984)
[33] McLean, A.; Blower, S., Imperfect vaccines and herd immunity to HIV, Proc. R. Soc. Lond. B, 253, 9-13 (1993)
[34] Blower, S.; McLean, A., Prophylactic vaccines, risk behavior change, and the probability of eradicating HIV in San Francisco, Science, 265, 1451-1454 (1994)
[35] Kribs-Zaleta, C. M.; Velasco-Hernández, J. X., A simple vaccination model with multiple endemic states, Math. Biosci., 164, 183-201 (2000) · Zbl 0954.92023
[36] Dushoff, J.; Huang, W.; Castillo-Chavez, C., Backwards bifurcations and catastrophe in simple models of fatal diseases, J. Math. Biol., 36, 227-248 (1998) · Zbl 0917.92022
[37] Birkhoff, G.; Rota, G. C., Ordinary Differential Equations (1982), Ginn · Zbl 0183.35601
[38] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics (1993), Academic Press: Academic Press Boston · Zbl 0777.34002
[39] Xiao, Y. N.; Chen, L. S., Modelling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171, 59-82 (2001) · Zbl 0978.92031
[40] Hofbauer, J.; Sigmund, K., The Theory of Evolution and Dynamical Systems (1988), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0678.92010
[41] LaSalle, J. P., The Stability of Dynamical Systems. The Stability of Dynamical Systems, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 25 (1976), SIAM: SIAM Philadelphia · Zbl 0364.93002
[42] Hsu Schmitz, S. F., Effects of treatment or/and vaccination on HIV transmission in homosexuals with genetic heterogeneity, Math. Biosci., 167, 1-18 (2000) · Zbl 0979.92023
[43] Gu, W.; Killen, G. F.; Mbogo, C. M.; Regens, J. L.; Githure, J. I.; Beier, J. C., An individual-based model of Plasmodium falciparum malaria transmission on the coast of Kenya, Trans. R. Soc. Trop. Med. Hyg., 97, 43-50 (2003)
[44] Dietz, K.; Molineaux, L.; Thomas, A., A malaria model tested in the African savannah, Bull. WHO, 50, 347-357 (1974)
[45] Chitnis, N.; Cushing, J. M.; Hyman, J. M., Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math., 67, 1, 24-45 (2006) · Zbl 1107.92047
[46] Detinova, T. S., Age Grouping Methods in Diptera of Medical Importance, with Special Reference to Some Vectors of Malaria. Age Grouping Methods in Diptera of Medical Importance, with Special Reference to Some Vectors of Malaria, Monograph Series 47 (1962), World Health Organisation: World Health Organisation Geneva
[47] Moyo, D. Z.; Zvavahera, M., Malaria cases in three districts in the Midlands Province, Zimbabwe, Pakistan J. Biol. Sci., 7, 9, 1574-1576 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.