×

Dlab’s theorem and tilting modules for stratified algebras. (English) Zbl 1127.16009

In the first main result of the paper under review the author obtains a module-theoretic characterization of algebras, which are standardly stratified in the sense of E. Cline, B. Parshall and L. Scott [“Stratifying endomorphism algebras”, Mem. Am. Math. Soc. 591 (1996; Zbl 0888.16006)], in terms of proper costandard filtrations for injective modules. This result is a generalization of V. Dlab’s characterization of quasi-hereditary algebras [from An. Ştiinţ. Univ. “Ovidius” Constanţa, Ser. Mat. 4, No. 2, 43-54 (1996; Zbl 0873.16008)].
The proper costandard modules are then used to develop tilting theory for standardly stratified algebras. The author proves the existence of tilting modules (i.e. those modules which have both standard and proper costandard filtrations) and gives a classification of indecomposable tilting modules. This is used to define the Ringel dual of a standardly stratified algebra, and it is shown that the opposite of this Ringel dual is standardly stratified. This unifies and generalizes the results of C. M. Ringel [Math. Z. 208, No. 2, 209-224 (1991; Zbl 0725.16011)] and I. Ágoston, D. Happel, E. Lukács and L. Unger [J. Algebra 226, No. 1, 144-160 (2000; Zbl 0949.16012)].
In the last part of the paper, the author obtains some estimates for the finitistic dimension of a standardly stratified algebra in terms of finitistic dimension of the endomorphism algebras of standard modules. For the so-called weakly properly stratified algebras some stronger estimates in terms of projective dimensions of tilting modules are obtained.

MSC:

16E30 Homological functors on modules (Tor, Ext, etc.) in associative algebras
16G30 Representations of orders, lattices, algebras over commutative rings
16E10 Homological dimension in associative algebras
16G10 Representations of associative Artinian rings
Full Text: DOI

References:

[1] Ágoston, I.; Happel, D.; Lukács, E.; Unger, L., Standardly stratified algebras and tilting, J. Algebra, 226, 1, 144-160 (2000) · Zbl 0949.16012
[2] Ágoston, I.; Happel, D.; Lukács, E.; Unger, L., Finitistic dimension of standardly stratified algebras, Comm. Algebra, 28, 6, 2745-2752 (2000) · Zbl 0964.16005
[3] Ágoston, I.; Dlab, V.; Lukács, E., Stratified algebras, C. R. Math. Acad. Sci. Soc. R. Can., 20, 1, 22-28 (1998) · Zbl 0914.16010
[4] Auslander, M.; Reiten, I., Applications of contravariantly finite subcategories, Adv. Math., 86, 1, 111-152 (1991) · Zbl 0774.16006
[5] Auslander, M., Representation theory of Artin algebras, II, Comm. Algebra, 1, 269-310 (1974) · Zbl 0285.16029
[6] Cline, E.; Parshall, B.; Scott, L., Stratifying endomorphism algebras, Mem. Amer. Math. Soc., 124, 591 (1996) · Zbl 0888.16006
[7] Dlab, V., Properly stratified algebras, C. R. Acad. Sci. Paris Sér. I Math., 331, 3, 191-196 (2000) · Zbl 0964.16009
[8] Dlab, V., Quasi-hereditary algebras revisited, (Representation Theory of Groups, Algebras, and Orders. Representation Theory of Groups, Algebras, and Orders, Constanţa, 1995. Representation Theory of Groups, Algebras, and Orders. Representation Theory of Groups, Algebras, and Orders, Constanţa, 1995, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat., vol. 4 (2) (1996), Univ. Ovidius Constanţa), 43-54 · Zbl 0873.16008
[9] Dlab, V.; Ringel, C. M., Quasi-hereditary algebras, Illinois J. Math., 33, 2, 280-291 (1989) · Zbl 0666.16014
[10] Dlab, V.; Ringel, C. M., The module theoretical approach to quasi-hereditary algebras, (Representations of Algebras and Related Topics. Representations of Algebras and Related Topics, Kyoto, 1990. Representations of Algebras and Related Topics. Representations of Algebras and Related Topics, Kyoto, 1990, London Math. Soc. Lecture Note Ser., vol. 168 (1992), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 200-224 · Zbl 0793.16006
[11] A. Frisk, Typical blocks of the category \(\mathcal{O} \); A. Frisk, Typical blocks of the category \(\mathcal{O} \) · Zbl 1236.17009
[12] Frisk, A., Two-step tilting for standardly stratified algebras, Algebra Discrete Math., 3, 38-59 (2004) · Zbl 1067.16007
[13] Frisk, A.; Mazorchuk, V., Properly stratified algebras and tilting, Proc. London Math. Soc. (3), 92, 1, 29-61 (2006) · Zbl 1158.16009
[14] Happel, D., Reduction techniques for homological conjectures, Tsukuba J. Math., 17, 1, 115-130 (1993) · Zbl 0809.16021
[15] Happel, D., Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Math. Soc. Lecture Note Ser., vol. 119 (1988), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0635.16017
[16] König, S., Filtrations, stratifications and applications, (Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry. Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry, Fields Inst. Commun., vol. 40 (2004), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 65-111 · Zbl 1057.16008
[17] M. Klucznik, S. Koenig, Characteristic Tilting Modules over Quasi-hereditary Algebra, Ergänzungsreihe 99-004, Bielefeld University, Bielefeld, 1999; M. Klucznik, S. Koenig, Characteristic Tilting Modules over Quasi-hereditary Algebra, Ergänzungsreihe 99-004, Bielefeld University, Bielefeld, 1999
[18] Lakatos, P., On a theorem of V. Dlab, Algebr. Represent. Theory, 3, 1, 99-103 (2000) · Zbl 0953.16009
[19] Mazorchuk, V., Stratified algebras arising in Lie theory, (Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry. Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry, Fields Inst. Commun., vol. 40 (2004), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 245-260 · Zbl 1106.17004
[20] Mazorchuk, V.; Ovsienko, S., Finitistic dimension of properly stratified algebras, Adv. Math., 186, 1, 251-265 (2004) · Zbl 1068.16007
[21] Mazorchuk, V.; Parker, A., On the relation between finitistic and good filtration dimensions, Comm. Algebra, 32, 5, 1903-1916 (2004) · Zbl 1075.16005
[22] Platzeck, M. I.; Reiten, I., Modules of finite projective dimension for standardly stratified algebras, Comm. Algebra, 29, 3, 973-986 (2001) · Zbl 1002.16009
[23] Ringel, C. M., The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z., 208, 2, 209-223 (1991) · Zbl 0725.16011
[24] Wakamatsu, T., Stable equivalence for self-injective algebras and a generalization of tilting modules, J. Algebra, 134, 2, 298-325 (1990) · Zbl 0726.16009
[25] P. Webb, Standard stratifications of EI categories and Alperin’s weight conjecture, J. Algebra, in press; P. Webb, Standard stratifications of EI categories and Alperin’s weight conjecture, J. Algebra, in press · Zbl 1160.20009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.