×

Deformations of four-dimensional Lie algebras. (English) Zbl 1127.14014

The authors study the moduli space of four-dimensional complex Lie algebras. It is a continuation of an earlier paper on the moduli space of three-dimensional complex Lie algebras [the authors, Commun. Contemp. Math. 7, No. 2, 145–165 (2005; Zbl 1075.14007)].
The classification of complex Lie algebras of low dimension is well-known. Up to dimension four, the classification was given by G. M. Mubarakzyanov [Izv. Vyssh. Uchebn. Zaved., Mat. 1963, No. 1(32), 114–123 (1963; Zbl 0166.04104)].
It is known that the set of isomorphism classes of complex Lie algebras of dimension \(n\) can be identified with the set of orbits of the affine complex \(N\)-spaces under the action of \(\text{GL}(n)\), where \(N = (n-1)n^2/2\). But this orbit space is not a geometric quotient in general and has a complicated algebraic structure [see H. Bjar and O. A. Laudal, Compos. Math. 75, No. 1, 69–111 (1990; Zbl 0708.14005)].
The main result in this paper is a computation of the versal deformations of any complex Lie algebra of dimension four. To compute the versal deformations, the authors use Lie algebra cohomology and an obstruction theory based on the point of view that Lie algebras are quadratic codifferentials defined on a vector space.
The authors also identify the moduli space of complex Lie algebras of dimension four with a collection of orbifolds and points. This gives a geometric picture of the various deformations, but it is not an algebraic moduli space.

MSC:

14D15 Formal methods and deformations in algebraic geometry
17B55 Homological methods in Lie (super)algebras
17B56 Cohomology of Lie (super)algebras
13D10 Deformations and infinitesimal methods in commutative ring theory
14B12 Local deformation theory, Artin approximation, etc.

References:

[1] DOI: 10.1016/S0024-3795(01)00473-6 · Zbl 0998.17002 · doi:10.1016/S0024-3795(01)00473-6
[2] DOI: 10.1006/jabr.1998.7714 · Zbl 0932.17005 · doi:10.1006/jabr.1998.7714
[3] DOI: 10.1070/SM1986v055n02ABEH003014 · Zbl 0597.17010 · doi:10.1070/SM1986v055n02ABEH003014
[4] DOI: 10.1006/jfan.1998.3349 · Zbl 0944.17015 · doi:10.1006/jfan.1998.3349
[5] DOI: 10.1016/S0021-8693(02)00067-4 · Zbl 1038.17012 · doi:10.1016/S0021-8693(02)00067-4
[6] DOI: 10.1142/S0219199705001702 · Zbl 1075.14007 · doi:10.1142/S0219199705001702
[7] Kirillov A. A., Amer. Math. Soc. Transl. 137 pp 21– · doi:10.1090/trans2/137/03
[8] Komrakov B., Small Dimensional and Linear Lie Algebras (2000)
[9] Nijenhuis A., J. Math. Mech. 17 pp 89–
[10] DOI: 10.1007/978-3-662-03066-0 · doi:10.1007/978-3-662-03066-0
[11] DOI: 10.1088/0305-4470/36/26/309 · Zbl 1040.17021 · doi:10.1088/0305-4470/36/26/309
[12] DOI: 10.1080/03081088908817910 · Zbl 0708.17010 · doi:10.1080/03081088908817910
[13] Turkowski P., Acta Cosmologica 20 pp 147–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.