×

Faà di Bruno’s formula, lattices, and partitions. (English) Zbl 1127.11023

Summary: The coefficients of \(g^{(s)}\) in expanding the \(r\)-th derivative of the composite function \(g \circ f\) by Faà di Bruno’s formula, is determined by a Diophantine linear system, which is proved to be equivalent to the problem of enumerating partitions of a finite set of integers attached to \(r\) and \(s\) canonically.

MSC:

11D45 Counting solutions of Diophantine equations
11H06 Lattices and convex bodies (number-theoretic aspects)
11D04 Linear Diophantine equations
05A17 Combinatorial aspects of partitions of integers
Full Text: DOI

References:

[1] Aardal, K.; Hurkens, C.; Lenstra, A. K., Solving a system of Diophantine equations with lower and upper bounds on the variables, Math. Oper. Res., 25, 427-442 (2000) · Zbl 1073.90528
[2] de Bruno, F., Note sur une nouvelle formule de calcul différentiel, Quart. J. Math., 1, 359-360 (1856)
[3] Constantine, G. M., Combinatorial Theory and Statistical Design (1987), Wiley: Wiley New York · Zbl 0617.05002
[4] Constantine, G. M.; Savits, T. H., A multivariate Faa di Bruno formula with applications, Trans. Amer. Math. Soc., 348, 503-520 (1996) · Zbl 0846.05003
[5] Flanders, H., From Ford to Faà, Amer. Math. Monthly, 108, 559-561 (2001) · Zbl 1004.26002
[6] Fraenkel, L. E., Formulae for high derivatives of composite functions, Math. Proc. Cambridge Philos. Soc., 83, 159-165 (1978) · Zbl 0388.46032
[7] von zur Gathen, J.; Gerhard, J., Modern Computer Algebra (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0936.11069
[8] Horowitz, E.; Sahni, S., Computing partitions with applications to the knapsack problem, J. ACM, 21, 277-292 (1974) · Zbl 0329.90046
[9] Kawagishi, M., The multi-dimensional Faà di Bruno formula, Rep. Res. Inst. Sci. Technol. Nihon Univ., 45, 1-6 (1999) · Zbl 1172.26309
[10] Mishkov, R. L., Generalization of the formula of Faa di Bruno for a composite function with a vector argument, Internat. J. Math. Math. Sci., 24, 481-491 (2000) · Zbl 0967.46031
[11] Riordan, J., Derivatives of composite functions, Bull. Amer. Math. Soc., 52, 664-667 (1946) · Zbl 0063.06505
[12] Ronga, F., A new look at Faà de Bruno’s formula for higher derivatives of composite functions and the expression of some intrinsic derivatives, Proc. Sympos. Pure Math., 40, Part 2, 423-431 (1983) · Zbl 0541.58010
[13] Yang, W. C., Derivatives are essentially integer partitions, Discrete Math., 222, 235-245 (2000) · Zbl 0964.05009
[14] Zeilberger, D., Kathy O’Hara’s constructive proof of the unimodality of the Gaussian polynomials, Amer. Math. Monthly, 96, 590-602 (1989) · Zbl 0726.05005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.