×

Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism. (English) Zbl 1126.82018

Summary: We study the existence of solutions to the orthogonal dynamics equation, which arises in the Mori-Zwanzig formalism in irreversible statistical mechanics. This equation generates the random noise associated with a reduction in the number of variables. If \(L\) is the Liouvillian, or Lie derivative associated with a Hamiltonian system, and \(P\) an orthogonal projection onto a closed subspace of \(L^2\), then the orthogonal dynamics is generated by the operator \((I -P)L\). We prove the existence of classical solutions for the case where \(P\) has finite-dimensional range. In the general case, we prove the existence of weak solutions.

MSC:

82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
Full Text: DOI

References:

[1] Chorin, A.; Hald, O.; Kupferman, R., Optimal prediction and the Mori-Zwanzig representation of irreversible processes, Proceedings of the National Academy of Sciences of the United States of America, 97, 2968-2973 (2000) · Zbl 0968.60036 · doi:10.1073/pnas.97.7.2968
[2] Chorin, A.; Hald, O.; Kupferman, R., Optimal prediction with memory, Physica D, 166, 239-257 (2002) · Zbl 1017.60046 · doi:10.1016/S0167-2789(02)00446-3
[3] Chung, K., A Course in Probability Theory (1974), New York: Academic Press, New York · Zbl 0345.60003
[4] Evans, D.; Morriss, G., Statistical Mechanics of Nonequlibrium Liquids (1990), London: Academic Press, London · Zbl 1145.82301
[5] Evans, L., Partial Differential Equations (1998), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0902.35002
[6] Friedrichs, K., Symmetric hyperbolic linear differential equations, Communications on Pure and Applied Mathematics, 7, 345-392 (1954) · Zbl 0059.08902 · doi:10.1002/cpa.3160070206
[7] Gripenberg, G.; Londen, S.-O.; Staffans, O., Volterra Integral and Functional Equations (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 0695.45002
[8] John, F., Partial Differential Equations (1982), New York: Springer-Verlag, New York · Zbl 0472.35001
[9] Just, W.; Gelfert, K.; Baba, N.; Riegert, A.; Kantz, H., Elimination of fast chaotic degrees of freedom: on the accuracy of the Born approximation, Journal of Statistical Physics, 112, 277-292 (2003) · Zbl 1031.34051 · doi:10.1023/A:1023635805818
[10] Just, W.; Kantz, H.; Rödenbeck, C.; Helm, M., Stochastic modelling: replacing fast degrees of freedom by noise, Journal of Physics A, 34, 3199-3213 (2001) · Zbl 1057.82009 · doi:10.1088/0305-4470/34/15/302
[11] Mori, H., Transport, collective motion, and Brownian motion, Progress in Theoretical Physics, 33, 423-450 (1965) · Zbl 0127.45002 · doi:10.1143/PTP.33.423
[12] Mori, H.; Fujisaka, H.; Shigematsu, H., A new expansion of the master equation, Progress in Theoretical Physics, 51, 109-122 (1974) · doi:10.1143/PTP.51.109
[13] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), New York: Springer-Verlag, New York · Zbl 0516.47023
[14] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness (1975), San Diego: Academic Press, San Diego · Zbl 0308.47002
[15] Renardy, M.; Rogers, R., An Introduction to Partial Differential Equations (1993), New York: Springer-Verlag, New York · Zbl 0917.35001
[16] Rudin, W., Real and Complex Analysis (1987), Boston: McGraw-Hill, Boston · Zbl 0925.00005
[17] Spivak, M., A Comprehensive Introduction to Differential Geometry (1990), Berkeley, CA: Publish or Perish, Berkeley, CA
[18] Stone, M., On one parameter unitary groups in Hilbert space, Annals of Mathematics, 33, 643-648 (1932) · JFM 58.0424.01 · doi:10.2307/1968538
[19] Yosida, K., Functional Analysis (1998), New York: Springer-Verlag, New York · Zbl 0152.32102
[20] Zwanzig, R.; Garrido, L., Problems in nonlinear transport theory, Systems Far from Equilibrium, 198-225 (1980), New York: Springer, New York · doi:10.1007/BFb0025619
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.