×

A class of Calogero type reductions of free motion on a simple Lie group. (English) Zbl 1126.37038

Summary: The reductions of the free geodesic motion on a noncompact simple Lie group \(G\) based on the \(G_{+} \times G_{+}\) symmetry given by left- and right-multiplications for a maximal compact subgroup \({G_{+} \subset G}\) are investigated. At generic values of the momentum map this leads to (new) spin Calogero type models. At some special values the ‘spin’ degrees of freedom are absent and we obtain the standard \(BC_{n}\) Sutherland model with three independent coupling constants from \(\text{SU} (n + 1, n)\) and from \(\text{SU} (n, n)\). This generalization of the Olshanetsky-Perelomov derivation of the \(BC_{n}\) model with two independent coupling constants from the geodesics on \(G / G_{+}\) with \(G = \text{SU} (n + 1, n)\) relies on fixing the right-handed momentum to a non-zero character of \(G_{+}\). The reductions considered permit further generalizations and work at the quantized level, too, for noncompact as well as for compact \(G\).

MSC:

37J15 Symmetries, invariants, invariant manifolds, momentum maps, reduction (MSC2010)
53D20 Momentum maps; symplectic reduction
17B80 Applications of Lie algebras and superalgebras to integrable systems
70G65 Symmetries, Lie group and Lie algebra methods for problems in mechanics
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests

References:

[1] Calogero F. (1971). Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12: 419–436 · doi:10.1063/1.1665604
[2] Olshanetsky M.A., Perelomov A.M. (1981). Classical integrable finite-dimensional systems related to Lie algebras. Phys. Rept. 71: 313–400 · doi:10.1016/0370-1573(81)90023-5
[3] Olshanetsky M.A., Perelomov A.M. (1983). Quantum integrable systems related to Lie algebras. Phys. Rept. 94: 313–404 · doi:10.1016/0370-1573(83)90018-2
[4] Perelomov, A.M.: Integrable Systems of Classical Mechanics and Lie Algebras. Birkhäuser (1990) · Zbl 0717.70003
[5] Heckman G. (1994). Hypergeometric and spherical functions. In: Heckman, G., Schlichtkrull, H. (eds) Harmonic Analysis and Special Functions on Symmetric Spaces Perspectives in Mathematics, vol 16, pp 1–89. Academic, NewYork
[6] Nekrasov, N.: Infinite-dimensional algebras, many-body systems and gauge theories. In: Morozov, A.Yu., Olshanetsky, M.A. (eds.) Moscow Seminar in Mathematical Physics. AMS Transl. Ser. 2, pp. 263–299. American Mathematics Social (1999) · Zbl 1056.37510
[7] D’Hoker E., Phong D.H. (1999). Seiberg–Witten theory and Calogero–Moser systems. Prog. Theor. Phys. Suppl. 135: 75–93 hep-th/9906027 · doi:10.1143/PTPS.135.75
[8] van Diejen J.F., Vinet L. (eds.) (2000) Calogero–Moser–Sutherland Models. Springer, Heidelberg (2000)
[9] Sutherland B. (2004). Beautiful Models. World Scientific, Singapore · Zbl 1140.82016
[10] Finkel F., Gómez-Ullate D., González-López A., Rodríguez M.A., Zhdanov R. (2004). A survey of quasi-exactly solvable systems and spin Calogero-Sutherland models. In: Tempesta, P. (eds) Superintegrability in Classical and Quantum Systems, pp 173–186. American Mathematical Society, New York · Zbl 1330.81189
[11] Etingof, P.: Lectures on Calogero–Moser systems. math.QA/0606233 · Zbl 1331.53002
[12] Polychronakos A.P. (2006). Physics and mathematics of Calogero particles. J. Phys. A Math. Gen. 39: 12793–12845 hep-th/0607033 · Zbl 1109.81086 · doi:10.1088/0305-4470/39/41/S07
[13] Aniceto I., Jevicki A. (2006). Notes on collective field theory of matrix and spin Calogero models. J. Phys. A Math. Gen. 39: 12765–12791 hep-th/0607152 · Zbl 1109.81084 · doi:10.1088/0305-4470/39/41/S06
[14] Olshanetsky M.A., Perelomov A.M. (1976). Completely integrable Hamiltonian systems connected with semisimple Lie algebras. Invent. Math. 37: 93–108 · Zbl 0342.58017 · doi:10.1007/BF01418964
[15] Olshanetsky M.A., Perelomov A.M. (1976). Explicit solutions of some completely integrable systems. Lett. Nuovo Cim. 17: 97–101 · Zbl 0342.58017 · doi:10.1007/BF02720431
[16] Inozemtsev V.I., Meshcheryakov D.V. (1985). Extension of the class of integrable dynamical systems connected with semisimple Lie algebras. Lett. Math. Phys. 9: 13–18 · Zbl 0573.58016 · doi:10.1007/BF00398546
[17] Opdam E.M. (1988). Root systems and hypergeometric functions IV. Comp. Math. 67: 191–209 · Zbl 0669.33008
[18] Oshima T., Sekiguchi H. (1995). Commuting families of differential operators invariant under the action of a Weyl group. J. Math. Sci. Univ. Tokyo 2: 1–75 · Zbl 0863.43007
[19] Bordner A.J., Sasaki R., Takasaki K. (1999). Calogero–Moser models II: symmetries and foldings. Prog. Theor. Phys. 101: 487–518 hep-th/9809068 · doi:10.1143/PTP.101.487
[20] Fehér L., Pusztai B.G. (2006). Spin Calogero models associated with Riemannian symmetric spaces of negative curvature. Nucl. Phys. B 751: 436–458 math-ph/0604073 · Zbl 1192.81188 · doi:10.1016/j.nuclphysb.2006.06.029
[21] Oblomkov A. (2004). Heckman–Opdam’s Jacobi polynomials for the BC n root system and generalized spherical functions. Adv. Math. 186: 153–180 math.RT/0202076 · Zbl 1054.33007 · doi:10.1016/j.aim.2003.08.005
[22] Helgason S. (1978). Differential Geometry. Lie Groups and Symmetric Spaces. Academic, New York · Zbl 0451.53038
[23] Knapp A.W. (2002). Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140. Birkhäuser, Boston · Zbl 1075.22501
[24] Ortega J.-P., Ratiu T.S. (2004). Momentum Maps and Hamiltonian Reduction Progress. in Mathematics vol. 222. Birkhäuser, Boston · Zbl 1241.53069
[25] Hochgerner, S.: Singular cotangent bundle reduction and spin Calogero–Moser systems. math.SG/0411068 · Zbl 1146.53062
[26] Kazhdan D., Kostant B., Sternberg S. (1978). Hamiltonian group actions and dynamical systems of Calogero type. Commun. Pure Appl. Math. XXXI: 481–507 · Zbl 0368.58008 · doi:10.1002/cpa.3160310405
[27] Avan J., Babelon O., Talon M. (1994). Construction of the classical R-matrices for the Toda and Calogero models. Alg. Anal. 6: 67–89 hep-th/9306102 · Zbl 0824.58028
[28] Olshanetsky M.A., Perelomov A.M. (1978). Quantum systems related to root systems, and radial parts of Laplace operators. Funct. Anal. Appl. 12: 121–128 math-ph/0203031 · Zbl 0407.43012 · doi:10.1007/BF01076255
[29] Etingof P.I., Frenkel I.B., Kirillov Jr., A.A. (1995) Spherical functions on affine Lie groups. Duke Math. J. 80, 59–90 (1995) hep-th/9407047 · Zbl 0848.43010 · doi:10.1215/S0012-7094-95-08003-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.