×

The Steinberg group of a monoid ring, nilpotence, and algorithms. (English) Zbl 1125.19002

Let \(M\) be a commutative monoid, \(R\) a commutative ring and \(\dim R\) its Krull dimension. For a natural number \(c\) denote by \(c_{*}\) the group endomorphism on \(\text{GL}_{r}(R[M])\) or \(K_{2,r}(R[M])\) induced by the monoid endomorphism \(M\rightarrow M\), \(m\rightarrow m^{c}.\) Here \(K_{2,r}(-)\) is the Milnor’s \(r\)th unstable \(K_2\).
The main result of the paper is the following theorem 1.1: Let \(M\) be a commutative cancellative torsion free monoid without nontrivial units, \(c\geq 2\) a natural number; \(R\) a commutative regular ring and \(k\) a field. Then:
(a) For any element \(z\in K_{2,r}(R[M])\), \(r\geq \max(5, \dim R+3)\) there exists \(j_{z}\geq 0\) such that
\[ (c^{j})_{*}(z)\in K_{2,r}(R)=K_2(R), \qquad j\geq j_{z}. \]
(b) For any matrix \(A\in \text{GL}_{r}(R[M])\), \(r\geq \max(3, \dim R+2),\) there exists an integer number \(j_{A}\geq 0\) such that
\[ (c^{j})_{*}(A)\in E_{r}(R[M])\text{GL}_{r}(R), \qquad j\geq j_{A}. \]
(c) There is an algorithm which finds for any matrix \(A\in \text{SL}_{r}(k[M])\), \(r\geq 3,\) an integer number \(j_{A}\geq 0\) and a factorization of the form:
\[ (c^{j})_{*}(A)={\prod}_{k} \, e_{p_{k}q_{k}}({\lambda}_{k}), \qquad e_{p_{k}q_{k}}({\lambda}_{k}) \in E_{r}(k[M]). \]
The proof uses an interesting inductive process which the author calls “pyramidal descent”.

MSC:

19C20 Symbols, presentations and stability of \(K_2\)
19C99 Steinberg groups and \(K_2\)

References:

[1] Bass, H.; Heller, A.; Swan, R., The Whitehead group of a polynomial extension, Inst. Hautes Études Sci. Publ. Math., 22, 61-79 (1964) · Zbl 0248.18026
[2] W. Bruns, J. Gubeladze, Polytopes, rings, and \(K\) http://math.sfsu.edu/gubeladze/publications/kripo.html; W. Bruns, J. Gubeladze, Polytopes, rings, and \(K\) http://math.sfsu.edu/gubeladze/publications/kripo.html · Zbl 1168.13001
[3] Cohn, P. M., On the structure of the \(GL_2\) of a ring, Inst. Hautes Études Sci. Publ. Math., 30, 5-53 (1966)
[4] G. Cortiñas, The obstruction to excision in \(K\); G. Cortiñas, The obstruction to excision in \(K\)
[5] Gubeladze, J., Anderson’s conjecture and the maximal monoid class over which projective modules are free, Math. USSR Sb., 63, 165-180 (1989) · Zbl 0668.13011
[6] Gubeladze, J., Classical algebraic \(K\)-theory of monoid algebras, (Lecture Notes in Math., vol. 1437 (1990), Springer-Verlag), 36-94 · Zbl 0731.19001
[7] Gubeladze, J., Nontriviality of \(S K_1(R [M])\), J. Pure Appl. Algebra, 104, 169-190 (1995) · Zbl 0840.19002
[8] Gubeladze, J., Higher \(K\)-theory of toric varieties, \(K\)-Theory, 28, 285-327 (2003) · Zbl 1039.19001
[9] Gubeladze, J., The nilpotence conjecture in \(K\)-theory of toric varieties, Invent. Math., 160, 173-216 (2005) · Zbl 1075.14051
[10] van der Kallen, W., Injective stability for \(K_2\), (Lecture Notes in Math., vol. 551 (1976), Springer-Verlag), 77-154 · Zbl 0349.18009
[11] van der Kallen, W., Another presentation for Steinberg groups, Indag. Math., 39, 304-312 (1977) · Zbl 0375.20034
[12] Lin, Z.; Xu, L.; Wu, Q., Applications of Gröbner bases to signal and image processing: A survey, Linear Algebra Appl., 391, 169-202 (2004) · Zbl 1070.94002
[13] Laubenbacher, R.; Woodburn, C., An algorithm for the Quillen-Suslin theorem for monoid rings, J. Pure Appl. Algebra, 117/118, 395-429 (1997) · Zbl 0887.13006
[14] Mushkudiani, Z., \(K_2\)-groups of monoid algebras over regular rings, Proc. A. Razmadze Math. Inst., 113, 120-137 (1995) · Zbl 0867.19002
[15] Milnor, J., Introduction to Algebraic \(K\)-Theory, Ann. of Math. Stud., vol. 72 (1971), Princeton Univ. Press · Zbl 0237.18005
[16] Park, H.; Woodburn, C., An algorithmic proof of Suslin’s stability theorem for polynomial rings, J. Algebra, 178, 277-298 (1995) · Zbl 0841.19001
[17] Quillen, D., Higher algebraic \(K\)-theory: I, (Lecture Notes in Math., vol. 341 (1973), Springer-Verlag), 85-147 · Zbl 0292.18004
[18] Quillen, D., Projective modules over polynomial rings, Invent. Math., 36, 167-171 (1976) · Zbl 0337.13011
[19] Srinivas, V., \(K_1\) of the cone over a curve, J. Reine Angew. Math., 381, 37-50 (1987) · Zbl 0631.14007
[20] Suslin, A., On the structure of the special linear group over polynomial rings, Math. USSR Izv., 11, 221-238 (1977) · Zbl 0378.13002
[21] Suslin, A. A.; Wodzicki, M., Excision in algebraic \(K\)-theory, Ann. of Math., 136, 2, 51-122 (1992) · Zbl 0756.18008
[22] Tulenbaev, M., The Steinberg group of a polynomial ring, Mat. Sb., 117, 131-143 (1982), (1982) · Zbl 0491.18010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.