×

Koszul and Gorenstein properties for homogeneous algebras. (English) Zbl 1125.16017

This paper studies various homological properties, such as Koszulity, AS-Gorenstein-ness and Poincaré duality for homogeneous algebras.
We begin by recapitulating three relevant definitions from the paper: A graded \(k\)-algebra \(A\) is ‘\(N\)-homogeneous’ (\(N\geqslant 2\)) if \(A=\text{Tens}(V)/I(R)\) where \(\text{Tens}(V)\) is the tensor algebra of a finite dimensional \(k\)-vector space \(V\), and \(I(R)\) is the two-sided ideal generated by a subspace \(R\subseteq V^{\otimes N}\). The first author [in J. Algebra 239, No. 2, 705-734 (2001; Zbl 1035.16023)] defined a notion of ‘(generalized) Koszulity’ for \(N\)-homogeneous algebras, which is also the definition used in this paper. Finally, if \(A\) is connected of finite global dimension \(D\), it is called ‘AS-Gorenstein’ provided that \(\text{Ext}^i_A(k,A)=0\) for \(i\neq D\) and \(\text{Ext}^D_A(k,A)\cong k\).
Sections 2, 3, and 4 are devoted to a satisfying discussion of various equivalent characterizations of Koszulity via (bimodule) Koszul \(N\)-complexes; and computations of some Yoneda products relevant for Section 5.
In Section 5 the authors give a criterion for AS-Gorenstein-ness which they use to prove that an \(N\)-homogeneous, generalized Koszul algebra \(A\) of finite global dimension is AS-Gorenstein if and only if its Yoneda algebra \(E(A)\) is Frobenius.
The final Section 6 deals with Poincaré duality, and the main result is a generalization of a theorem due to M. Van den Bergh [Proc. Am. Math. Soc. 126, No. 5, 1345-1348 (1998); erratum ibid. 130, No. 9, 2809-2810 (2002; Zbl 0894.16005)]: An \(N\)-homogeneous, generalized Koszul and AS-Gorenstein algebra \(A\) of finite global dimension \(D\) has Poincaré duality: \(\text{HH}^i(A,M)\cong\text{HH}_{D-i}(A,{_{\varepsilon^{D+1}\varphi}M})\). Here \(\text{HH}_*\) (\(\text{HH}^*\)) denotes Hochschild (co)homology, \(M\) is any \(A\)-\(A\)-bimodule, and \(\varepsilon,\varphi\) are appropriate automorphisms of \(A\).

MSC:

16S37 Quadratic and Koszul algebras
16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)
16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)
16S38 Rings arising from noncommutative algebraic geometry

References:

[1] Artin, M. and Schelter, W. F.: Graded algebras of global dimension 3, Adv. Math. 66 (1987), 171–216. · Zbl 0633.16001 · doi:10.1016/0001-8708(87)90034-X
[2] Backelin, J. and Fröberg, R.: Koszul algebras, Veronese subrings and rings with linear resolutions, Rev. Roumaine Math. Pures. Appl. 30 (1985), 85–97. · Zbl 0583.16017
[3] Beilinson, A. A., Ginzburg, V. and Soergel, W.: Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473–527. · Zbl 0864.17006 · doi:10.1090/S0894-0347-96-00192-0
[4] Benson, D. J.: Representations and Cohomology I, Cambridge Stud. Adv. Math. 30, Cambridge University Press, Cambridge, 1991.
[5] Berger, R.: Koszulity for nonquadratic algebras, J. Algebra 239 (2001), 705–734. · Zbl 1035.16023 · doi:10.1006/jabr.2000.8703
[6] Berger, R.: Koszulity for nonquadratic algebras II, math.QA/0301172.
[7] Berger, R., Dubois-Violette, M. and Wambst, M.: Homogeneous algebras, J. Algebra 261 (2003), 172–185. · Zbl 1061.16034 · doi:10.1016/S0021-8693(02)00556-2
[8] Bourbaki, N.: Algèbre homologique, Algèbre Chap. 10, Éléments de mathématique, Masson, Paris, 1980. · Zbl 0455.18010
[9] Cartan, H. and Eilenberg, S.: Homological Algebra, Princeton University Press, Princeton, 1956.
[10] Connes, A. and Dubois-Violette, M.: Yang–Mills algebra, Lett. Math. Phys. 61 (2002), 149–158. · Zbl 1028.53025 · doi:10.1023/A:1020733628744
[11] Dubois-Violette, M.: \(d^N=0\) : Generalized homology, K-Theory 14 (1998), 371–404. · Zbl 0918.18008 · doi:10.1023/A:1007786403736
[12] Dubois-Violette, M. and Popov, T.: Homogeneous algebras, statistics and combinatorics, Lett. Math. Phys. 61 (2002), 159–170. · Zbl 1020.16007 · doi:10.1023/A:1020770601601
[13] Kassel, C. and Wambst, M.: Algèbre homologique des \(N\) -complexes et homologies de Hochschild aux racines de l’unité, Publ. Res. Inst. Math. Sci. 34 (1998), 91–114. · Zbl 0992.18010 · doi:10.2977/prims/1195144755
[14] Lu, D. M., Palmieri, J. H., Wu, Q. S. and Zhang, J. J.: \(A_{\infty}\) -algebras for ring-theorists, Algebra Colloq. 11 (2004), 91–128. · Zbl 1066.16049
[15] Manin, Y. I.: Quantum Groups and Non-Commutative Geometry, CRM, Université de Montréal, 1988. · Zbl 0724.17006
[16] Marconnet, N.: Homologies d’algèbres Artin–Schelter régulières cubiques, C.R. Acad. Sci. Paris 338 (2004), 117–120. · Zbl 1056.16008
[17] Nastacescu, C. and Van Oystaeyen, F.: Graded Ring Theory, North-Holland, Amsterdam, 1982.
[18] Priddy, S. B.: Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60. · Zbl 0261.18016 · doi:10.1090/S0002-9947-1970-0265437-8
[19] Smith, S. P.: Some finite dimensional algebras related to elliptic curves, CMS Conf. Proc. 19 (1996), 315–348. · Zbl 0856.16009
[20] Stafford, J. T.: Noncommutative projective geometry, ICM 2002, Vol II, Beijing Higher Education, 2002, pp. 93–103. · Zbl 1057.14004
[21] Stephenson, D. R. and Zhang, J. J.: Growth of graded noetherian rings, Proc. Amer. Math. Soc. 125 (1997), 1593–1605. · Zbl 0879.16011 · doi:10.1090/S0002-9939-97-03752-0
[22] Van den Bergh, M.: Existence theorems for dualizing complexes over non-commutative graded and filtered rings, J. Algebra 195 (1997), 662–679. · Zbl 0894.16020 · doi:10.1006/jabr.1997.7052
[23] Van den Bergh, M.: A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Amer. Math. Soc. 126 (1998), 1345–1348, and Erratum, Proc. Amer. Math. Soc. 130 (2002), 2809–2810. · Zbl 0894.16005
[24] Wambst, M.: Homologie cyclique et homologie simpliciale aux racines de l’unité, \(K\) -Theory 23 (2001), 377–397. · Zbl 0996.18011 · doi:10.1023/A:1011900909584
[25] Weibel, C. A.: An Introduction to Homological Algebra, Cambridge University Press, 1994. · Zbl 0797.18001
[26] Yekutieli, A.: Dualizing complexes over noncommutative graded algebras, J. Algebra 153 (1992), 41–84. · Zbl 0790.18005 · doi:10.1016/0021-8693(92)90148-F
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.