×

An analysis of the Petri net based model of the human body iron homeostasis process. (English) Zbl 1124.92007

Summary: A Petri net based model of the human body iron homeostasis is presented and analyzed. The body iron homeostasis is an important but not fully understood complex process. The modeling of the process presented in the paper is expressed in the language of Petri net theory. An application of this theory to the description of biological processes allows for very precise analysis of the resulting models. Here, such an analysis of the body iron homeostasis model from a mathematical point of view is given.

MSC:

92C30 Physiology (general)
68U99 Computing methodologies and applications
05C90 Applications of graph theory
Full Text: DOI

References:

[1] Aisen, P.; Enns, C. A.; Wessling-Resnick, M., Chemistry and biology of eucariotic iron metabolism, Int. J. Biochem. Cell. B., 33, 940-959 (2001)
[2] Anderson, G. J.; Frazer, D. M., Hepatic iron metabolism, Semin. Liver. Dis., 25, 420-432 (2005)
[3] Conrad, M. E.; Umbreit, J. N., Pathways of iron absorption, Blood Cells. Mol. Dis., 29, 336-355 (2002)
[4] Doi, A.; Fujita, S.; Matsuno, H.; Nagasaki, M.; Miyano, S., Constructing biological pathway models with hybrid functional Petri nets, In Silico Biol., 4, 271-291 (2004)
[5] Flemming, M. D.; Tenor, C. C.; Su, M. A.; Foerlenzer, D.; Beier, D. R.; Detrich, W.; Anderews, N. C., Microcytic anaemia mice have a mutation Nramp2, a candidate iron transporter gene, Nat. Genet., 16, 382-386 (1997)
[6] Fleming, R. E.; Sly, W. S., Hepcidin: a putative iron-regulatory hormone relevant to heridetary hemochromatosis and the anemia of chronic disease, Proc. Natl. Acad. Sci. U.S.A., 98, 8160-8162 (2001)
[7] Formanowicz D., Sackmann A., Formanowicz P., Blazewicz J. Petri net based model of the body iron homeostasis, submitted for publication-a.; Formanowicz D., Sackmann A., Formanowicz P., Blazewicz J. Petri net based model of the body iron homeostasis, submitted for publication-a. · Zbl 1124.92007
[8] Formanowicz D., Sackmann A., Formanowicz P., Blazewicz J. Some aspects of the anemia of chronic disorder modeled and analyzed by Petri net based approach, submitted for publication-b.; Formanowicz D., Sackmann A., Formanowicz P., Blazewicz J. Some aspects of the anemia of chronic disorder modeled and analyzed by Petri net based approach, submitted for publication-b. · Zbl 1124.92007
[9] Frazer, D. M.; Anderson, G. J., The orchestration of body iron intake: how and where do enterocytes receive their cues? Blood Cells Mol, Dis., 30, 288-297 (2003)
[10] Ganz, T., Hepcidin, a key regulator of iron metabolism and mediator of anemia and inflammation, Blood, 102, 783-788 (2003)
[11] Grafahrend-Belau, E., Schreiber, F., Heiner, M., Sackmann, A., Junker, B.H., Winder, K., Koch I. Modularisation of biochemical networks through hierachical cluster analysis of t-invariants of biochemical Petri nets, submitted for publication.; Grafahrend-Belau, E., Schreiber, F., Heiner, M., Sackmann, A., Junker, B.H., Winder, K., Koch I. Modularisation of biochemical networks through hierachical cluster analysis of t-invariants of biochemical Petri nets, submitted for publication.
[12] Hardy, S.; Robillard, P. N., Modelling and simulation of molecular biology systems using petri nets: modelling goals of various approaches, J. Bioinform. Comput. Biol., 2, 595-613 (2004)
[13] Heiner, M.; Koch, I.; Will, J., Model validation of biological pathways using petri nets - demonstrated for apoptosis, Biosystems., 75, 15-28 (2004)
[14] Hofestädt, R., A petri net application of metabolic processes, J. Syst. Anal. Modell. Simul., 16, 113-122 (1994) · Zbl 0829.92010
[15] Kawabata, H.; Germain, R. S.; Vuong, P. T.; Nakamaki, T.; Said, J. W.; Koeffler, H. P., Tranferrin receptor 2-a supports cell growth both in iron-chelated cultured cells and in vivo, J. Bioch. Chem., 275, 16618-16625 (2000)
[16] McKie, A. T.; Barrow, D.; Latunde-Dada, G. O.; Rolfs, A.; Sager, G.; Mudaly, E.; Mudaly, M.; Richardson, C.; Barlow, D.; Bomford, A.; Peters, T. J.; Raja, K. B.; Shirali, S.; Hediger, M. A.; Farzaneh, F.; Simpson, R. J., An iron-regulated ferric reductase associated with the absorption of dietary iron, Science, 291, 1755-1759 (2001)
[17] Koch, I.; Junker, B. H.; Heiner, M., Application of petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber, Bioinformatics, 21, 1219-1226 (2005)
[18] Lautenbach, K., 1973. Exact liveness conditions of a petri net class (in german). In GMD Report 82, Bonn.; Lautenbach, K., 1973. Exact liveness conditions of a petri net class (in german). In GMD Report 82, Bonn.
[19] Matsuno, H.; Tanaka, Y.; Aoshima, H.; Doi, A.; Matsui, M.; Miyano, S., Biopathways representation and simulation on hybrid functional petri net, In Silico Biol., 3, 389-404 (2003)
[20] Mellman, I.; Fuchs, R.; Helenius, A., Acidification of the endocytic and exocytic pathways, Annu. Rev. Biochem., 55, 663-700 (1986)
[21] Morgan, E. H.; Oates, P. S., Mechanisms and regulation of intestinal iron absorption, Blood Cells. Mol. Dis., 29, 384-399 (2002)
[22] Murata, T., Petri nets: properties, analysis and applications, Proc. IEEE, 541-580 (1989)
[23] Oria, R.; Alvarez-Hernández, X.; Licéaga, J.; Brock, J. H., Uptake and handling of iron from transferrin, lactoferrin and immune complexes by a macrophage. cell line, Biochem. J., 252, 221-225 (1998)
[24] Petri, C.A., 1962. Communication with automata (in German). In Schriften des IIM Nr. 3, Institut für Instrumentelle Mathematik, Bonn, 16-27.; Petri, C.A., 1962. Communication with automata (in German). In Schriften des IIM Nr. 3, Institut für Instrumentelle Mathematik, Bonn, 16-27.
[25] Pinney, J. W.; Westhead, D. R.; McConkey, G. A., Petri net representations in systems biology, Biochem. Soc. Trans., 31, 1513-1515 (2003)
[26] Ponka, P., Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells, Blood, 1-25 (1989)
[27] Reddy, V. N.; Mavrovouniotis, M. L.; Liebman, M. N., Petri net representation in metabolic pathways, (Proc. Int. Conf. Intell. Syst. Mol. Biol. (1993)), 328-336
[28] Reisig, W., Petri nets: an introduction (1985), Springer Verlag: Springer Verlag Heidelberg · Zbl 0555.68033
[29] Sackmann, A., Heiner, M., Koch, I. Application of Petri net based analysis techniques to signal transduction pathways, BMC Bioinformatics, in press.; Sackmann, A., Heiner, M., Koch, I. Application of Petri net based analysis techniques to signal transduction pathways, BMC Bioinformatics, in press.
[30] Schuster, S.; Hilgetag, C.; Schuster, R., Determining elementary modes of functioning in biochemical reaction networks at steady state, (Proceedings of the Second Gauss Symposium (1993)), 101-114
[31] Starke, P. H., Analysis of Petri net models (1990), Teubner Verlag: Teubner Verlag Stuttgart, (in German) · Zbl 0724.68002
[32] Theurl, I.; Ludwiczek, S.; Eller, P.; Seifert, M.; Artner, E.; Brunner, P.; Weiss, G., Pathways for the regulation of body iron homeostasis in response to experimental iron overload, J. Hepatol., 43, 711-719 (2005)
[33] Voss, K.; Heiner, M.; Koch, I., Steady state analysis of metabolic pathways using petri nets, In Silico Biol., 3, 367-387 (2003)
[34] Vulpe, C. D.; Kuo, Y. M.; Murphy, T. L.; Cowley, L.; Askwith, C.; Libina, N.; Gitschier, J.; Anderson, G. J., Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse, Nat. Gen., 21, 195-199 (1999)
[35] Weiss, G., Iron and the anaemia of chronic disease, Kidney Int., 55, 12-17 (1999)
[36] Zevedei-Oancea, I.; Schuster, S., Topological analysis of metabolic networks based on petri net theory, In Silico Biol., 3, 323-345 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.