×

A nonparametric approach to the estimation of lengths and surface areas. (English) Zbl 1124.62017

Summary: The Minkowski content \(L_0(G)\) of a body \(G\subset \mathbb R^d\) represents the boundary length (for \(d=2\)) or the surface area (for \(d=3\)) of \(G\). A method for estimating \(L_0(G)\) is proposed. It relies on a nonparametric estimator based on the information provided by a random sample (taken on a rectangle containing \(G\)) in which we are able to identify whether every point is inside or outside \(G\). Some theoretical properties concerning strong consistency, \(L_1\)-error and convergence rates are obtained. A practical application to a problem of image analysis in cardiology is discussed in some detail. A brief simulation study is provided.

MSC:

62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference
62H35 Image analysis in multivariate analysis

References:

[1] Baddeley, A. J., Gundersen, H. J. G. and Cruz-Orive, L. M. (1986). Estimation of surface area from vertical sections. J. Microscopy 142 259–276.
[2] Baddeley, A. J. and Jensen, E. B. V. (2005). Stereology for Statisticians . Chapman and Hall/CRC, Boca Raton, FL. · Zbl 1086.62108
[3] Baíllo, A. (2003). Total error in a plug-in estimator of level sets. Statist. Probab. Lett. 65 411–417. · Zbl 1116.62338 · doi:10.1016/j.spl.2003.08.007
[4] Canzonieri, V. and Carbone, A. (1998). Clinical and biological applications of image analysis in non-Hodgkin’s lymphomas. Hematological Oncology 16 15–28.
[5] Cuevas, A. and Fraiman, R. (1997). A plug-in approach to support estimation. Ann. Statist. 25 2300–2312. · Zbl 0897.62034 · doi:10.1214/aos/1030741073
[6] Cuevas, A. and Rodríguez-Casal, A. (2003). Set estimation: An overview and some recent developments. In Recent Advances and Trends in Nonparametric Statistics (M. G. Akritas and D. N. Politis, eds.) 251–264. North-Holland, Amsterdam.
[7] Cuevas, A. and Rodríguez-Casal, A. (2004). On boundary estimation. Adv. in Appl. Probab. 36 340–354. · Zbl 1045.62019 · doi:10.1239/aap/1086957575
[8] Devroye, L. and Wise, G. L. (1980). Detection of abnormal behavior via nonparametric estimation of the support. SIAM J. Appl. Math. 38 480–488. JSTOR: · Zbl 0479.62028 · doi:10.1137/0138038
[9] Dümbgen, L. and Walther, G. (1996). Rates of convergence for random approximations of convex sets. Adv. in Appl. Probab. 28 384–393. JSTOR: · Zbl 0861.60022 · doi:10.2307/1428063
[10] Federer, H. (1959). Curvature measures. Trans. Amer. Math. Soc. 93 418–491. JSTOR: · Zbl 0089.38402 · doi:10.2307/1993504
[11] García-Dorado, D., Theroux, P., Duran, J. M., Solares, J., Alonso, J., Sanz, E., Muñoz, R., Elizaga, J., Botas, J. and Fernández-Avilés, F. (1992). Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion. Circulation 85 1160–1174.
[12] Gokhale, A. M. (1990). Unbiased estimation of curve length in 3D using vertical slices. J. Microscopy 159 133–141.
[13] Korostelëv, A. P. and Tsybakov, A. B. (1993). Minimax Theory of Image Reconstruction . Lecture Notes in Statist. 82 . Springer, New York. · Zbl 0833.62039
[14] Matilla, P. (1995). Geometry of Sets and Measures in Euclidean Spaces . Fractals and Rectifiability . Cambridge Univ. Press. · Zbl 0819.28004
[15] Prakasa Rao, B. L. S. (1983). Nonparametric Functional Estimation . Academic Press, New York. · Zbl 0542.62025
[16] Polonik, W. (1995). Measuring mass concentrations and estimating density contour clusters—an excess mass approach. Ann. Statist. 23 855–881. · Zbl 0841.62045 · doi:10.1214/aos/1176324626
[17] Schneider, R. (1993). Convex Bodies : The Brunn–Minkowski Theory . Cambridge Univ. Press. · Zbl 0798.52001
[18] Serra, J. (1984). Image Analysis and Mathematical Morphology . Academic Press, London.
[19] Tsybakov, A. B. (1997). On nonparametric estimation of density level sets. Ann. Statist. 25 948–969. · Zbl 0881.62039 · doi:10.1214/aos/1069362732
[20] Walther, G. (1997). Granulometric smoothing. Ann. Statist. 25 2273–2299. · Zbl 0919.62026 · doi:10.1214/aos/1030741072
[21] Walther, G. (1999). On a generalization of Blaschke’s rolling theorem and the smoothing of surfaces. Math. Methods Appl. Sci. 22 301–316. · Zbl 0933.52003 · doi:10.1002/(SICI)1099-1476(19990310)22:4<301::AID-MMA42>3.0.CO;2-M
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.