×

Rotating matter waves in Bose-Einstein condensates. (English) Zbl 1124.35085

Summary: We consider analytically and numerically the dynamics of waves in two-dimensional, magnetically trapped Bose-Einstein condensates in the weak interaction limit. In particular, we consider the existence and stability of azimuthally modulated structures such as rings, multi-poles, soliton necklaces, and vortex necklaces. We show how such structures can be constructed from the linear limit through Lyapunov-Schmidt techniques and continued to the weakly nonlinear regime. Subsequently, we examine their stability, and find that among the above solutions the only one which is always stable is the vortex necklace. The analysis is given for both attractive and repulsive interactions among the condensate atoms. Finally, the analysis is corroborated by numerical bifurcation results, as well as by numerical evolution results that showcase the manifestation of the relevant instabilities.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
82D50 Statistical mechanics of superfluids
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
37K45 Stability problems for infinite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI

References:

[1] Abdallah, N.; Méhats, F.; Schmeiser, C.; Weishäupl, R., The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential, SIAM J. Math. Anal., 37, 1, 189-199 (2005) · Zbl 1094.35114
[2] Abdullaev, F.; Kraenkel, R., Coherent atomic oscillations and resonances between coupled Bose-Einstein condensates with time-dependent trapping potential, Phys. Rev. A, 62, 023613 (2000)
[3] Abo-Shaeer, J. R.; Raman, C.; Vogels, J. M.; Ketterle, W., Observation of vortex lattices in Bose-Einstein condensates, Science, 292, 5516, 476-479 (2001)
[4] Agrawal, G., Nonlinear Fiber Optics (2001), Academic Press
[5] Anderson, B.; Dholakia, K.; Wright, E., Atomic-phase interference devices based on ring-shaped Bose-Einstein condensates: Two-ring case, Phys. Rev. A, 67, 3, 033601 (2003)
[6] Atkinson, K., An Introduction to Numerical Analysis (1989), John Wiley and Sons · Zbl 0718.65001
[7] Band, Y. B.; Towers, I.; Malomed, B. A., Unified semiclassical approximation for Bose-Einstein condensates: Application to a bec in an optical potential, Phys. Rev. A, 67, 023602 (2003)
[8] Battye, R.; Cooper, N.; Sutcliffe, P., Stable Skyrmions in two-component Bose-Einstein condensates, Phys. Rev. Lett., 88, 8, 080401 (2002)
[9] Bentley, J. B.; Davis, J. A.; Bandres, M. A.; Gutiérrez-Vega, J. C., Generation of helical Ince-Gaussian beams with liquid-crystal display, Opt. Lett., 31, 5, 649-651 (2006)
[10] Bradley, R.; Deconinck, B.; Kutz, J., Exact nonstationary solutions to the mean-field equations of motion for two-component Bose-Einstein condensates in periodic potentials, J. Phys. A, 38, 1901-1916 (2005) · Zbl 1136.82339
[11] Busch, T.; Cirac, J.; Pérez-García, V.; Zollar, P., Stability and collective excitations of a two-moment Bose-Einstein condensed gas: A moment approach, Phys. Rev. A, 56, 4, 2978-2983 (1997)
[12] Carr, L. D.; Clark, C. W., Vortices and ring solitons in Bose-Einstein condensates, Phys. Rev. A, 74, 043613 (2006)
[13] Chossat, P.; Lauterbach, R., (Methods in Equivariant Bifurcations and Dynamical Systems. Methods in Equivariant Bifurcations and Dynamical Systems, Advanced Series in Nonlinear Dynamics, vol. 15 (2000), World Scientific) · Zbl 0968.37001
[14] Crasovan, L.-C.; Monina-Terriza, G.; Torres, J.; Torner, L.; Pérez-García, V.; Mihalache, D., Globally linked vortex clusters in trapped wave fields, Phys. Rev. E, 66, 3, 036612 (2002)
[15] Crasovan, L.-C.; Pérez-Garcia, V.; Danaila, I.; Mihalache, D.; Torner, L., Three-dimensional parallel vortex rings in Bose-Einstein condensates, Phys. Rev. A, 70, 3, 033605 (2004)
[16] Dalfovo, F.; Giorgini, S.; Pitaevskii, L.; Stringari, S., Theory of Bose-Einstein condensation in trapped gases, Rev. Modern Phys., 71, 463-512 (1999)
[17] Davis, J. A.; Bentley, J. B., Azimuthal prism effect with partially blocked vortex-producing lenses, Opt. Lett., 30, 3204-3206 (2005)
[18] Kotlyar, V. V.; Kovalev, A. A.; Soifer, V. A.; Tuvey, C. S.; Davis, J. A., Sidelobe contrast reduction for optical vortex beams using helical axicon, Opt. Lett., 32, 921-923 (2007)
[19] Engels, P.; Coddington, I.; Haljan, P. C.; Cornell, E. A., Nonequilibrium effects of anisotropic compression applied to vortex lattices in Bose-Einstein condensates, Phys. Rev. Lett., 89, 10, 100403 (2002)
[20] Ginsberg, N.; Brand, J.; Hau, L., Observation of hybrid soliton vortex-ring structures in Bose-Einstein condensates, Phys. Rev. Lett., 94, 4, 040403 (2005)
[21] Grillakis, M., Linearized instability for nonlinear Schrödinger and Klein-Gordon equations, Comm. Pure Appl. Math., 46, 747-774 (1988) · Zbl 0632.70015
[22] He, Y. J.; Fan, H. H.; Dong, J. W.; Wang, H. Z., Self-trapped spatiotemporal necklace-ring solitons in the Ginzburg-Landau equation, Phys. Rev. E, 74, 016611 (2006)
[23] Haˇraˇguş, M.; Kapitula, T., On the spectra of periodic waves for infinite-dimensional Hamiltonian systems (2007)
[24] Kim, J.k.; Fetter, A., Dynamics of a single ring of vortices in two-dimensional trapped Bose-Einstein condensates, Phys. Rev. A, 70, 4, 043624 (2004)
[25] Kapitula, T.; Kevrekidis, P., Bose-Einstein condensates in the presence of a magnetic trap and optical lattice, Chaos, 15, 3, 037114 (2005) · Zbl 1144.37362
[26] Kapitula, T.; Kevrekidis, P.; Sandstede, B., Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems, Physica D, 195, 3-4, 263-282 (2004) · Zbl 1056.37080
[27] Kapitula, T.; Kevrekidis, P.; Sandstede, B., Addendum: Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems, Physica D, 201, 1-2, 199-201 (2005) · Zbl 1080.37070
[28] Kapitula, T.; Kevrekidis, P.; Chen, Z., Three is a crowd: Solitary waves in photorefractive media with three potential wells, SIAM J. Appl. Dyn. Syst., 5, 4, 598-633 (2006) · Zbl 1210.35171
[29] Kasamatsu, K.; Tsubota, M.; Ueda, M., Quadrupole and scissors modes and nonlinear mode coupling in trapped two-component Bose-Einstein condensates, Phys. Rev. A, 69, 4, 043621 (2004)
[30] Kato, T., Perturbation Theory for Linear Operators (1980), Springer-Verlag: Springer-Verlag Berlin · Zbl 0435.47001
[31] Kawaguchi, Y.; Ohmi, T., Splitting instability of a multiply charged vortex in a Bose-Einstein condensate, Phys. Rev. A, 70, 4, 043610 (2004)
[32] Kevrekidis, P.; Frantzeskakis, D., Pattern forming dynamical instabilities of Bose-Einstein condensates, Modern Phys. Lett. B, 18, 173-202 (2004)
[33] Kevrekidis, P.; Nistazakis, H.; Frantzeskakis, D.; Malomed, B.; Carretero-González, R., Families of matter-waves in two-component Bose-Einstein condensates, Eur. Phys. J. D, 28, 181-185 (2004)
[34] Kevrekidis, P. G.; Carretero-González, R.; Frantzeskakis, D. J.; Kevrekidis, I. G., Vortices in Bose-Einstein condensates: Some recent developments, Modern Phys. Lett. B, 18, 30, 1481-1505 (2004) · Zbl 1086.82014
[35] Kivshar, Yu. S.; Agrawal, G., Optical Solitons: From Fibers to Photonic Crystals (2003), Academic Press
[36] R. Kollár, R. Pego, Stability of vortices in two-dimensional Bose-Einstein condensates: A mathematical approach. Preprint; R. Kollár, R. Pego, Stability of vortices in two-dimensional Bose-Einstein condensates: A mathematical approach. Preprint · Zbl 1254.82004
[37] Konotop, V. V.; Brazhnyi, V. A., Dynamics of Bose-Einstein condensates in optical lattices, Modern Phys. Lett. B, 18, 14, 179-215 (2006)
[38] Leanhardt, A. E.; Görlitz, A.; Chikkatur, A. P.; Kielpinski, D.; Shin, Y.; Pritchard, D. E.; Ketterle, W., Imprinting vortices in a Bose-Einstein condensate using topological phases, Phys. Rev. Lett., 89, 19, 190403 (2002)
[39] Leggett, A., Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Modern Phys., 73, 307-356 (2001)
[40] Liu, M.; Wen, L.; Xiong, H.; Zhan, M., Structure and generation of the vortex-antivortex superposed state in Bose-Einstein condensates, Phys. Rev. A, 73, 6, 063620 (2006)
[41] MacKay, R., Stability of equilibria of Hamiltonian systems, (MacKay, R.; Meiss, J., Hamiltonian Dynamical Systems (1987), Adam Hilger), 137-153
[42] Madison, K. W.; Chevy, F.; Wohlleben, W.; Dalibard, J., Vortex formation in a stirred Bose-Einstein condensate, Phys. Rev. Lett., 84, 806-809 (2000)
[43] Matthews, M.; Anderson, B.; Haljan, P.; Hall, D.; Wieman, C.; Cornell, E., Vortices in a Bose-Einstein condensate, Phys. Rev. Lett., 83, 13, 2498-2501 (1999)
[44] Morsch, O.; Oberthaler, M., Theory of nonlinear matter waves in optical lattices, Rev. Modern Phys., 78, 179-215 (2006)
[45] Möttönen, M.; Mizushima, T.; Isoshima, T.; Salomaa, M. M.; Machida, K., Splitting of a doubly quantized vortex through intertwining in Bose-Einstein condensates, Phys. Rev. A, 68, 023611 (2003)
[46] Pelinovsky, D.; Yang, J., Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations, Stud. Appl. Math., 115, 1, 109-137 (2005) · Zbl 1145.35461
[47] Pethick, C. J.; Smith, H., Bose-Einstein condensation in Dilute Gases (2002), Cambridge University Press
[48] Pitaevskii, L. P.; Stringari, S., Bose-Einstein Condensation (2003), Oxford University Press · Zbl 1110.82002
[49] Pu, H.; Law, C.; Eberly, J.; Bigelow, N., Coherent disintegration and stability of vortices in trapped Bose condensates, Phys. Rev. A, 59, 2, 1533-1537 (1999)
[50] Saito, H.; Ueda, M., Split-merge cycle, fragmented collapse, and vortex disintegration in rotating Bose-Einstein condensates with attractive interactions, Phys. Rev. A, 69, 1, 013604 (2004)
[51] Shin, Y.; Saba, M.; Vengalattore, M.; Pasquini, T. A.; Sanner, C.; Leanhardt, A. E.; Prentiss, M.; Pritchard, D. E.; Ketterle, W., Dynamical instability of a doubly quantized vortex in a Bose-Einstein condensate, Phys. Rev. Lett., 93, 16, 160406 (2004)
[52] Staliunas, K.; Longhi, S.; de Valcárcel, G. J., Faraday patterns in Bose-Einstein condensates, Phys. Rev. Lett., 89, 21, 210406 (2002)
[53] Theocharis, G.; Frantzeskakis, D.; Kevrekidis, P. G.; Malomed, B.; Kivshar, Yu. S., Ring dark solitons and vortex necklaces in Bose-Einstein condensates, Phys. Rev. Lett., 12, 90, 120403 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.