×

General recurrence and ladder relations of hypergeometric-type functions. (English) Zbl 1124.33017

The authors consider sequences of solutions \(y_{\nu_i}(z,\bar{c}_i),i=0,\ldots,M\) of the hypergeometric-type differential equation \[ \sigma(z)y''+\tau(z;\nu,\bar{c})y'+\lambda_{\nu}(\bar{c})y=0, \] where \(\sigma\) and \(\tau\) are polynomials of degree not greater than two and one, respectively, \(\bar{c}\) stands for a set of meaningful parameters, \(\nu\) is a solution of the equation \(\lambda(\bar{c})+\nu\tau'(\bar{c})+\frac{\nu(\nu-1)}{2}\sigma''=0.\) Under several restrictions on \(\{y_{\nu_i}\}\) it is proven that the sum rule \[ \sum_{i=0}^{N-1}A_{\nu_i,k_i}(z,\bar{c}_i)y_{\nu_i}^{(k_i)}(z;\bar{c}_i)=0\quad (3\leq N\leq M+1) \] holds with rational functions \(A_{\nu_i,k_i}(z).\)

MSC:

33C99 Hypergeometric functions
34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc.
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions (1965), Dover: Dover New York
[2] Aldaya, V.; Bisquert, J.; Navarro-Salas, J., The quantum relativistic harmonic oscillator: generalized Hermite polynomials, Phys. Lett. A, 156, 381 (1991)
[3] Al-Salam, W. A., Characterization theorems for orthogonal polynomials, (Nevai, P., Orthogonal Polynomials: Theory and Practice (1990), Kluwer Academic Publishers: Kluwer Academic Publishers New York) · Zbl 0704.42021
[4] R. Álvarez-Nodarse, J.L. Cardoso, N.R. Quintero, On recurrence relations for radial wave functions for the \(N\); R. Álvarez-Nodarse, J.L. Cardoso, N.R. Quintero, On recurrence relations for radial wave functions for the \(N\) · Zbl 1109.33009
[5] Andrews, G. E.; Askey, R.; Roy, R., Special Functions (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0920.33001
[6] Andrews, L. C., Special Functions for Engineers and Applied Mathematics (1985), Macmillan Publishing Company: Macmillan Publishing Company New York
[7] Bagrov, V. G.; Gitman, D. M., Exact Solutions of Relativistic Wave Equations (1990), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0723.35066
[8] Barik, N., \(K\)-th differences of functions satisfying three term recurrence relations (I) and (II), Pure Math. Manuscript, 3, 11-21 (1984), 4 (1984) 47 · Zbl 0586.39005
[9] Bera, P. K.; Battacharyya, S.; Das, U.; Talukdar, B., Recurrence relations for \(N\)-dimensional radial wave functions, Phys. Rev. A, 48, 4764 (1993)
[10] Bochner, S., Über Sturm-Liouvillesche polynomsysteme, Math. Z., 89, 730 (1929) · JFM 55.0260.01
[11] Cardoso, J. L.; Álvarez-Nodarse, R., Recurrence relations for radial wavefunctions for the \(N\) th-dimensional oscillators and hydrogenlike atoms, J. Phys. A: Math. Gen., 36, 2055 (2003) · Zbl 1070.81037
[12] Chihara, T. S., An Introduction to Orthogonal Polynomials (1978), Gordon & Breach: Gordon & Breach New York · Zbl 0389.33008
[13] Dattoli, G.; Dipace, A., Remarks of the derivation of sum rules of special functions, Nuovo Cimento, 90B, 85 (1985)
[14] Dattoli, G.; Dipace, A.; Torre, A., About the sum rules of special functions, Nuovo Cimento, 90B, 85 (1985)
[15] Dattoli, G.; Loreto, V.; Mari, C.; Richetta, M.; Torre, A., Biunitary transformations and ordinary differential equations I, Nuovo Cimento, 106B, 1357 (1991)
[16] Dattoli, G.; Loreto, V.; Mari, C.; Richetta, M.; Torre, A., Biunitary transformations and ordinary differential equations II, Nuovo Cimento, 106B, 1375 (1991)
[17] Dattoli, G.; Loreto, V.; Mari, C.; Richetta, M.; Torre, A., Biunitary transformations and ordinary differential equations III, Nuovo Cimento, 106B, 1391 (1991)
[18] J.S. Dehesa, F. Domínguez-Adame, E.R. Arriola, A. Zarzo, Hydrogen atom and orthogonal polynomials, in: C. Brezinski, L. Gori, A. Ronveaux (Eds.), Proceedings of the Third International Symposium on Orthogonal Polynomials and Their Applications, IMACS Annals of Computational Applied Mathematics, vol. 9, J.C. Baltzer AG, Basel, 1991, p. 223.; J.S. Dehesa, F. Domínguez-Adame, E.R. Arriola, A. Zarzo, Hydrogen atom and orthogonal polynomials, in: C. Brezinski, L. Gori, A. Ronveaux (Eds.), Proceedings of the Third International Symposium on Orthogonal Polynomials and Their Applications, IMACS Annals of Computational Applied Mathematics, vol. 9, J.C. Baltzer AG, Basel, 1991, p. 223. · Zbl 0868.33006
[19] Dehesa, J. S.; Yáñez, R. J.; Pérez-Victoria, M.; Sarsa, A., Non linear characterizations for functions of hypergeometric-type and their derivatives of any order, J. Math. Anal. Appl., 184, 35 (1994) · Zbl 0803.33009
[20] Dehesa, J. S.; Yáñez, R. J.; Zarzo, A.; Aguilar, J. A., New linear relationships of hypergeometric-type functions with applications to orthogonal polynomials, Rend. Mat. (Ser. VII), 13, Roma, 661 (1993) · Zbl 0802.33002
[21] Dirac, P. A.M., The Principles of Quantum Mechanics (1958), Oxford U.P.: Oxford U.P. Oxford, (see also Proc. R. Soc. London Ser. A 109 (1925) 642) · Zbl 0080.22005
[22] Erdélyi, A., Bateman Manuscript Project, Higher Transcendental Functions, (Erdélyi, A. (1955), Mc-Graw Hill: Mc-Graw Hill New York) · Zbl 0064.06302
[23] Hansen, E. R., Sums of functions satisfying recursion relations, Amer. Math. Monthly, 88, 676 (1981) · Zbl 0474.33006
[24] Ince, E. L., Ordinary Differential Equations (1956), Dover: Dover New York · Zbl 0063.02971
[25] Infeld, L.; Hull, T. E., The factorization method, Rev. Mod. Phys., 23, 21 (1951) · Zbl 0043.38602
[26] Inoui, T., Unified theory of recurrence formulas, Prog. Theoret. Phys., 3, 169 (1948), 244
[27] de Lange, O. L., Operational Methods in Quantum Mechanics (1991), Clarendon Press: Clarendon Press Oxford
[28] Marcellán, F.; Branquinho, A.; Petronhilo, J., Classical orthogonal polynomials: a functional approach, Acta Appl. Math., 34, 283 (1994) · Zbl 0793.33009
[29] P. Martínez, R.J. YáÑez, A. Zarzo, Properties of the relativistic Hermite polynomials from the differential equation that they satisfy, in: D. Cocolicchio, G. Dattoli, H. Srivastava (Eds.), Proceedings of the Workshop “Advanced Special Functions and Applications” Melfi, Italy, May 1999, Aracne Editrice, Rome. Proc. Melfi Sch. Adv. Top. Math. Phys. 1 (2000) 127.; P. Martínez, R.J. YáÑez, A. Zarzo, Properties of the relativistic Hermite polynomials from the differential equation that they satisfy, in: D. Cocolicchio, G. Dattoli, H. Srivastava (Eds.), Proceedings of the Workshop “Advanced Special Functions and Applications” Melfi, Italy, May 1999, Aracne Editrice, Rome. Proc. Melfi Sch. Adv. Top. Math. Phys. 1 (2000) 127. · Zbl 1022.33005
[30] W. Miller, Jr., Symmetry and Separation of Variables, Encyclopedia of Mathematics and Its Applications, vol. 4, Addison-Wesley, Reading, MA, 1977.; W. Miller, Jr., Symmetry and Separation of Variables, Encyclopedia of Mathematics and Its Applications, vol. 4, Addison-Wesley, Reading, MA, 1977. · Zbl 0368.35002
[31] Morales, J.; Areaga, G.; Peña, J. J.; López-Bonilla, J. J., Alternative approach to the factorization method, Int. J. Quantum Chem., 26, 171 (1992)
[32] Morales, J.; Peña, J. J.; López-Bonilla, J. J., Algebraic approach to matrix elements: recurrence relations and closed formulas for hydrogen-like wavefunctions, Phys. Rev. A, 45, 4259 (1992)
[33] Nieto, M. M., Hydrogen atom and relativistic pi-mesic atom in \(N\)-space dimensions, Am. J. Phys., 47, 1067 (1979)
[34] Nikiforov, A. F.; Uvarov, V. B., Special Functions of Mathematical Physics (1988), Birkhauser: Birkhauser Basel · Zbl 0694.33005
[35] Olver, F. J.W., Asymptotics and Special Functions (1974), Academic Press: Academic Press New York, London · Zbl 0303.41035
[36] Peetre, J., Correspondence principle for the quantized annulus: Romanovski polynomials and Morse potentials, J. Funct. Anal., 117, 377 (1993) · Zbl 0787.58021
[37] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, 3 Volumes, Gordon & Breach, New York, 1986.; A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, 3 Volumes, Gordon & Breach, New York, 1986. · Zbl 0606.33001
[38] Schultz-Piszachich, W., Eine klasse isotroper turbulenzfelder mit permanenzeigenschaft und existenten tripelkorrelationen, Z. Angew. Math. Mech., 56, 303 (1976) · Zbl 0333.76023
[39] Srivastava, H. M., Some orthogonal polynomials representing the energy spectral functions for a family of isotropic turbulence fields, Z. Angew. Math. Mech., 64, 255 (1984) · Zbl 0509.33008
[40] Temme, N. M., Special Functions: An Introduction to the Classical Functions of Mathematical Physics (1996), Wiley: Wiley New York · Zbl 0863.33002
[41] C. Truesdell, An Essay Toward a Unified Theory of Special Functions, Annals of Mathematics Studies, No. 18, Princeton University Press, Princeton, NJ, 1948.; C. Truesdell, An Essay Toward a Unified Theory of Special Functions, Annals of Mathematics Studies, No. 18, Princeton University Press, Princeton, NJ, 1948.
[42] Yáñez, R. J.; van Assche, W.; Dehesa, J. S., Position and momentum information entropies of the \(D\)-dimensional harmonic oscillator and hydrogen atom, Phys. Rev. A, 50, 489 (1994)
[43] Yáñez, R. J.; Dehesa, J. S.; Nikiforov, A. F., The three-term recurrence relation and the differentiation formulas for hypergeometric-type functions, J. Math. Anal. Appl., 188, 855 (1994) · Zbl 0821.33005
[44] Yáñez, R. J.; Dehesa, J. S.; Zarzo, A., Four-term recurrence relations of hypergeometric-type polynomials, Nuovo Cimento, 109B, 725 (1994)
[45] A. Zarzo, Hypergeometric-type differential equations, Ph.D. Thesis, University of Granada, Granada, Spain, September 1995 (in Spanish).; A. Zarzo, Hypergeometric-type differential equations, Ph.D. Thesis, University of Granada, Granada, Spain, September 1995 (in Spanish). · Zbl 0844.33007
[46] Zarzo, A.; Dehesa, J. S.; Torres, J., On a new set of polynomials representing the wave functions of the quantum relativistic harmonic oscillator, Ann. Numer. Math., 2, 439 (1995) · Zbl 0899.33010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.