×

Integrability of optimal mappings. (English. Russian original) Zbl 1124.28002

Math. Notes 80, No. 4, 518-531 (2006); translation from Mat. Zametki 80, No. 4, 546-560 (2006).
The author contributes to the study of the Monge-Kantorovich optimal transportation problem. In response to practical problems arising in a wide range of areas including statistical physics, expert systems and queueing theory, such studies have generated work in various fields of the mathematical sciences such as functional analysis, probability theory, statistics, linear and stochastic programming, information theory and cybernetics, as well as matrix theory.
This paper studies the integrability of optimal maps \(T\) taking a probability measure \(\mu\) to another measure \(g \cdot \mu\), and assumes that \(T\) minimizes the cost function \(c\) and that \(\mu\) satisfies some special inequality relative to \(c\) (the infimum-convolution inequality or the logarithmic \(c\)-Sobolev inequality). The results obtained are applied to the analysis of measures of the form \(\exp(-|x|^{\alpha})\). The bibliography contains 25 references mostly in English and includes many in Russian and in French, representing some of the vast and scattered literature on and the international nature of the work.

MSC:

28A12 Contents, measures, outer measures, capacities
39B72 Systems of functional equations and inequalities
26D10 Inequalities involving derivatives and differential and integral operators
49Q20 Variational problems in a geometric measure-theoretic setting
Full Text: DOI

References:

[1] Y. Brenier, ”Polar factorization and monotone rearrangement of vector-valued functions,” Comm. Pure Appl. Math., 44 (1991), 375–417. · Zbl 0738.46011 · doi:10.1002/cpa.3160440402
[2] R. J. McCann, ”Existence and uniqueness of monotone measure-preserving maps,” Duke Math. J., 80 (1995), 309–323. · Zbl 0873.28009 · doi:10.1215/S0012-7094-95-08013-2
[3] L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows in Metric Spaces and in the Wasserstein Spaces of Probability Measures, Lectures in Math., ETH, Zurich, 2005. · Zbl 1090.35002
[4] S. T. Rachev and L. Rüschendorf, Mass Transportation Problems, vols. I, II, Springer, New York, 1998.
[5] C. Villani, Topics in Optimal Transportation, Amer. Math. Soc., Providence, RI, 2003. · Zbl 1106.90001
[6] L. Gross, ”Logarithmic Sobolev inequalities,” Amer. J. Math., 97 (1975), no. 4, 1061–1083. · Zbl 0318.46049 · doi:10.2307/2373688
[7] V. I. Bogachev, Foundations of Measure Theory, vols. 1, 2, RKhD, Moscow-Izhevsk, 2003.
[8] F. Y. Wang, ”Logarithmic Sobolev inequalities on non-compact Riemannian manifolds,” Probab. Theory Related Fields, 109 (1997), 417–424. · Zbl 0887.35012 · doi:10.1007/s004400050137
[9] M. Ledoux, The Concentration of Measure Phenomenon, Amer. Math. Soc., Providence, RI, 2001. · Zbl 0995.60002
[10] C. Ané, S. Blachère, D. Chafai, P. Fougère, I. Gentil, F. Malrieu, C. Roberto, and G. Scheffer, Sur les inégalités de Sobolev logarithmiques, Panorama et Synthèses, vols. 10, Soc. Math. France, Paris, 2002.
[11] S. G. Bobkov, I. Gentil, and M. Ledoux, ”Hypercontractivity of Hamilton-Jacobi equations,” J. Math. Pures Appl., 80 (2001), no. 7, 669–696. · Zbl 1038.35020 · doi:10.1016/S0021-7824(01)01208-9
[12] M. Talagrand, ”Transportation cost for Gaussian and other product measures,” Geom. Funct. Anal., 6 (1996), 587–600. · Zbl 0859.46030 · doi:10.1007/BF02249265
[13] F. Otto and C. Villani, ”Generalization of an inequality by Talagrand and links with logarithmic Sobolev inequality,” J. Funct. Anal., 173 (2000), 361–400. · Zbl 0985.58019 · doi:10.1006/jfan.1999.3557
[14] Y. Bolley and C. Villani, ”Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation cost inequalities,” Ann. Faculté des Sciences de Toulouse, 14 (2005), 331–352. · Zbl 1087.60008
[15] H. Djellout, A. Guillin, and L. Wu, ”Transportation cost-information inequalities and applications to random dynamical systems and diffusions,” Ann. Probab., 32 (2004), no. 3B, 2702–2732. · Zbl 1061.60011 · doi:10.1214/009117904000000531
[16] P. Cattiaux and A. Guillin, ”Talagrand’s like quadratic transportation cost inequalities,” in: Preprint, 2004. · Zbl 1118.58017
[17] X. Fernique, ”Extension du théorème de Cameron-Martin aux translations aléatoires. II. Intégrabilité des densités,” in: High Dimensional Probability, III (Sandjberg, 2002), Progr. Probab., vols. 55, Birkhäuser, Basel, 2003, pp. 95–102.
[18] V. I. Bogachev and A. V. Kolesnikov, ”Integrability of absolutely continuous transformations of measures and applications to optimal mass transportation,” Tear. Veroyatnost. i Primenen. [Theory Probab. Appl.], 50 (2005), no. 3, 433–456.
[19] I. Gentil, A. Guillin, and L. Miclo, ”Modified logarithmic Sobolev inequalities and transportation inequalities,” Probab. Theory Related Fields, 133 (2005), no. 3, 409–436. · Zbl 1080.26010 · doi:10.1007/s00440-005-0432-9
[20] W. Gangbo and R. J. McCann, ”The geometry of optimal transportation,” Acta Math., 177 (1996), 113–161. · Zbl 0887.49017 · doi:10.1007/BF02392620
[21] S. G. Bobkov and B. Zegarlinski, ”Entropy bounds and isoperimetry,” Mem. Amer. Math. Soc., 176 (2005), no. 829. · Zbl 1161.46300
[22] S. G. Bobkov and F. Götze, ”Exponential integrability and transportation cost related to logarithmic Sobolev inequality,” J. Funct. Anal., 163 (1999), 1–28. · Zbl 0924.46027 · doi:10.1006/jfan.1998.3326
[23] R. Latala and K. Oleskiewicz, ”Between Sobolev and Poincaré,” in: Geometric Aspects of Functional Analysis, Lecture Notes in Math., vols. 1745, Springer, Berlin, 2000, pp. 147–168.
[24] F. Barthe, P. Cattiaux, and C. Roberto, ”Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry,” Revista Mat. Iberoamericana (to appear); in: E-print math. PR/0407219, 2004.
[25] F. Y. Wang, ”Probability distance inequalities on Riemannian manifolds and path spaces,” J. Funct. Anal., 206 (2004), 167–190. · Zbl 1048.58013 · doi:10.1016/S0022-1236(02)00100-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.