×

A variational multiscale method for inelasticity: application to superelasticity in shape memory alloys. (English) Zbl 1123.74046

Summary: This paper presents a variational multiscale method for developing stabilized finite element formulations for small-strain inelasticity. The multiscale method arises from a decomposition of displacement field into coarse (resolved) and fine (unresolved) scales. The resulting finite element formulation allows arbitrary combinations of interpolation functions for displacement and pressure fields, and thus yields a family of stable and convergent elements. Specifically, equal-order interpolations that are easy to implement but violate the celebrated Babuska-Brezzi condition, become stable and convergent. An important feature of the present method is that it does not lock in the incompressible limit. A nonlinear constitutive model for superelastic behavior of shape memory alloys is integrated in the multiscale formulation. Numerical tests of the performance of elements are presented, and representative simulations of superelastic behavior of shape memory alloys are shown.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74M05 Control, switches and devices (“smart materials”) in solid mechanics
Full Text: DOI

References:

[1] Auricchio, F.; Taylor, R. L.; Lubliner, J., Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior, Comput. Methods Appl. Mech. Engrg., 146, 281-312 (1997) · Zbl 0898.73019
[2] Baiocchi, C.; Brezzi, F.; Franca, L., Virtual bubbles and Galerkin/Least-squares type methods (Ga.L.S.), Comput. Methods Appl. Mech. Engrg., 105, 125-141 (1993) · Zbl 0772.76033
[3] Belytschko, T.; Bindeman, L. P., Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems, Comput. Methods Appl. Mech. Engrg., 88, 311-340 (1991) · Zbl 0742.73019
[4] Brezzi, F.; Bristeau, M. O.; Franca, L. P.; Mallet, M.; Roge, G., A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput. Methods Appl. Mech. Engrg., 96, 117-129 (1992) · Zbl 0756.76044
[5] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin methods for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[6] Brinson, L. C., One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variables, J. Intell. Mater. Syst. Struct., 4, 229-242 (1993)
[7] Brinson, L. C.; Hwang, S., Simplifications and comparisons of shape memory alloy constitutive models, J. Intell. Mater. Syst. Struct., 7, 108-114 (1996)
[8] Commend, S.; Truty, A.; Zimmermann, T., Stabilized finite elements applied to elastoplasticity: I. Mixed displacement-pressure formulation, Comput. Methods Appl. Mech. Engrg., 193, 3559-3586 (2004) · Zbl 1068.74073
[9] Garikipati, K.; Hughes, T. J.R., A variational multiscale approach to strain localization-formulation for multidimensional problems, Comput. Methods Appl. Mech. Engrg., 188, 39-60 (2000) · Zbl 1011.74069
[10] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice-Hall: Prentice-Hall Englewoods Cliffs, NJ, Dover edition, 2000 · Zbl 0634.73056
[11] Hughes, T. J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127, 387-401 (1995) · Zbl 0866.76044
[12] Hughes, T. J.R., Generalization of selective integration procedures to anisotropic and nonlinear media, Int. J. Numer. Methods Engrg., 15, 1413-1418 (1980) · Zbl 0437.73053
[13] Hughes, T. J.R.; Brooks, A., A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: applications to the streamline upwind procedure, (Gallagher, R. H.; Carey, G. F.; Oden, J. T.; Zienkiewicz, O. C., Finite Elements in Fluids, vol. IV (1982), Wiley: Wiley Chichester), 46-65
[14] Hughes, T. J.R.; Franca, L. P., A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg., 65, 85-96 (1987) · Zbl 0635.76067
[15] Hughes, T. J.R.; Franca, L. P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59, 85-99 (1986) · Zbl 0622.76077
[16] Hughes, T. J.R.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 173-189 (1989) · Zbl 0697.76100
[17] Hughes, T. J.R.; Malkus, D. S., A general penalty/mixed equivalence theorem for anisotropic, incompressible finite elements, (Atluri, S. N.; Gallaher, R. H.; Zienkiewicz, O. C., Hybrid and Mixed Finite Element Methods (1983), John Wiley: John Wiley London), 487-496
[18] Klaas, O.; Maniatty, A. M.; Shephard, M. S., A stabilized mixed Petrov-Galerkin finite element method for finite elasticity. formulation for linear displacement and pressure interpolation, Comput. Methods Appl. Mech. Engrg., 180, 65-79 (1999) · Zbl 0959.74066
[19] Lexcellent, C.; Leclercq, S.; Gabry, B.; Bourbon, G., The two way shape memory effect of shape memory alloys: an experimental study and a phenomenological model, Int. J. Plast., 16, 1155-1168 (2000) · Zbl 0957.74501
[20] Lubliner, J.; Auricchio, F., Generalized plasticity and shape memory alloys, Int. J. Solids Struct., 33, 991-1003 (1996) · Zbl 0902.73034
[21] Malkus, D. S.; Hughes, T. J.R., Mixed finite element methods-reduced and selective integration techniques: a unification of concepts, Comput. Methods Appl. Mech. Engrg., 15, 1, 63-81 (1987) · Zbl 0381.73075
[22] Masud, A., Stabilized methods in solid mechanics, (Franca, L. P.; Tezduyar, T. E.; Masud, A., Finite Element Methods: 1970’s and Beyond (2004), CIMNE: CIMNE Barcelona, Spain), 172-187
[23] Masud, A.; Panahandeh, M.; Auricchio, F., A finite deformation finite element model for the pseudoelastic behavior of shape memory alloys, Comput. Methods Appl. Mech. Engrg., 148, 23-37 (1997) · Zbl 0924.73215
[24] Masud, A.; Xia, K., A stabilized mixed finite element method for nearly incompressible elasticity, J. Appl. Mech., 72, 711-720 (2005) · Zbl 1111.74548
[25] Muller, I.; Xu, H., On the pseudo-elastic hysteresis, Acta Metall. Mater., 39, 263-271 (1991)
[26] Ortiz, M.; Simo, J. C., An analysis of a new class of integration algorithms for elastoplastic constitutive relations, Int. J. Numer. Methods Engrg., 23, 353-366 (1986) · Zbl 0585.73058
[27] Qidwai, M. A.; Lagoudas, D. C., Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms, Int. J. Numer. Methods Engrg., 47, 1123-1168 (2000) · Zbl 0960.74067
[28] Rajagopal, K. R.; Srinivasa, A. R., On the inelastic behavior of solids. Part I. Twinning, Int. J. Plast., 11, 653-678 (1995) · Zbl 0858.73006
[29] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1997), Springer-Verlag · Zbl 0934.74003
[30] Simo, J. C.; Rifai, M. S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Methods Engrg., 29, 1595-1636 (1990) · Zbl 0724.73222
[31] Simo, J. C.; Taylor, R. L.; Pister, K. S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 51, 177-208 (1985) · Zbl 0554.73036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.